RENOVATE HANGER 728
ADMINISTRATIVE SPACES

AT THE

MARINE CORPS AIR STATION
BEAUFORT, SOUTH CAROLINA 29904

FINAL SUBMISSION

DESIGN BY:

BES, INC.
BEAUFORT, SOUTH CAROLINA

SUBMITTED BY: Date:
Robert Deloach November 2011
BES, Inc.

APPROVED BY: Date:

Public Works Engineering Officer
Project Table of Contents

Division 00 - Procurement and Contracting Requirements

- 00 01 15 List of Drawings

Division 01 - General Requirements

- 01 11 00 Summary of Work
- 01 14 00 Work Restrictions **
- 01 20 00.00 20 Price and Payment Procedures **
- 01 30 00 Administrative Requirements **
- 01 33 00 Submittal Procedures **
- 01 35 29 Safety and Occupational Health Requirements **
- 01 35 40.00 20 Environmental Management **
- 01 42 00 Sources for Reference Publications
- 01 45 00.00 20 Construction Quality Control **
- 01 62 35 Recycled / Recovered Materials **
- 01 74 19 Construction and Demolition Waste Management **
- 01 77 00.00 20 Closeout Procedures **
- 01 78 23 Operation and Maintenance Data **

Division 02 - Existing Conditions

- 02 41 00 Demolition **
- 02 82 16.00 20 Engineering Control of Asbestos Containing Materials **
- 02 82 33.13 20 Removal/Control and Disposal of Paint with Lead **

Division 03 - Concrete

- 03 30 00.00 20 Cast-in-Place Concrete **

Division 04 - Masonry

- 04 20 00.00 40 Unit Masonry **

Division 06 - Wood, Plastics, and Composites

- 06 10 00 Rough Carpentry **
- 06 20 00 Finish Carpentry
- 06 61 16 Solid Polymer (Solid Surfacing) Fabrications

Division 07 - Thermal and Moisture Protection

- 07 41 63 Fabricated Roof Panel Assemblies
- 07 42 13 Metal Wall Panels
- 07 60 00 Flashing and Sheet Metal **
- 07 84 00 Firestopping **
- 07 92 00 Joint Sealants **

Division 08 - Openings

- 08 11 13 Steel Doors and Frames **
- 08 71 00 Door Hardware **

Division 09 - Finishes

- 09 22 00 Metal Support Assemblies **
09 29 00 GYPSUM BOARD **
09 30 00 CERAMIC TILE, QUARRY TILE, AND PAVER TILE **
09 51 00 ACOUSTICAL CEILINGS **
09 65 00 RESILIENT FLOORING **
09 68 00 CARPET **
09 90 00 PAINTS AND COATINGS **

DIVISION 10 - SPECIALTIES

10 14 02 INTERIOR SINAGE
10 21 13 TOILET COMPARTMENTS **
10 26 13 WALL AND CORNER GUARDS
10 28 13 TOILET ACCESSORIES **
10 44 16 FIRE EXTINGUISHERS **
10 51 13 METAL LOCKERS

DIVISION 12 - FURNISHINGS

12 21 00 WINDOW BLINDS

DIVISION 22 - PLUMBING

22 00 00 PLUMBING, GENERAL PURPOSE **

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING

23 03 00.00 20 BASIC MECHANICAL MATERIALS AND METHODS **
23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS **
23 08 00.00 20 HVAC TESTING/ADJUSTING/BALANCING **
23 09 54.00 20 DIRECT DIGITAL CONTROL SYSTEMS **
23 20 00 HVAC PIPING
23 30 13.00 20 DUCTWORK AND DUCTWORK ACCESSORIES **
23 73 13 OUTSIDE AIR preconditioner

DIVISION 26 - ELECTRICAL

26 00 00.00 20 BASIC ELECTRICAL MATERIALS AND METHODS **
26 20 00 INTERIOR DISTRIBUTION SYSTEM **
26 51 00 INTERIOR LIGHTING **
26 56 00 EXTERIOR LIGHTING **

DIVISION 27 - COMMUNICATIONS

27 10 00 BUILDING TELECOMMUNICATIONS CABLEATING SYSTEM **

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

28 31 76 INTERIOR FIRE ALARM AND MASS NOTIFICATION SYSTEM

NOTE: ** DENOTES GENERIC SPECIFICATIONS

-- End of Project Table of Contents --
PART 1 GENERAL

1.1 SUMMARY

This section lists the drawings for the project pursuant to contract clause "DFARS 252.236-7001, Contract Drawings, Maps and Specifications."

1.2 CONTRACT DRAWINGS

Contract drawings are as follows:

<table>
<thead>
<tr>
<th>MCAS PW DRAWING NO.</th>
<th>SHEET NO.</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1.0</td>
<td></td>
<td>TITLE SHEET</td>
</tr>
<tr>
<td>C1.0</td>
<td></td>
<td>SERVICE YARD PLAN - DEMOLITION & NEW WORK</td>
</tr>
<tr>
<td>S1.0</td>
<td></td>
<td>STRUCTURAL NOTES AND DETAILS</td>
</tr>
<tr>
<td>S2.0</td>
<td></td>
<td>ROOF STRUCTURAL PLANS - DEMOLITION & NEW WORK</td>
</tr>
<tr>
<td>A1.1</td>
<td></td>
<td>FLOOR PLANS - FIRST & SECOND FLOOR - EXISTING & DEMOLITION</td>
</tr>
<tr>
<td>A2.1</td>
<td></td>
<td>FIRST FLOOR PLAN - NEW WORK</td>
</tr>
<tr>
<td>A2.2</td>
<td></td>
<td>SECOND FLOOR PLAN - NEW WORK</td>
</tr>
<tr>
<td>A2.3</td>
<td></td>
<td>FLOOR FINISH PLANS - FIRST & SECOND FLOORS - NEW WORK</td>
</tr>
<tr>
<td>A3.0</td>
<td></td>
<td>REFLECTED CEILING PLANS - FIRST & SECOND FLOOR - NEW WORK</td>
</tr>
<tr>
<td>A4.0</td>
<td></td>
<td>ROOF PLANS DEMOLITION & NEW WORK</td>
</tr>
<tr>
<td>A4.1</td>
<td></td>
<td>ROOF DETAILS - NEW WORK</td>
</tr>
<tr>
<td>A5.1</td>
<td></td>
<td>EXTERIOR ELEVATIONS - SOUTH & EAST - NEW WORK</td>
</tr>
<tr>
<td>A5.2</td>
<td></td>
<td>EXTERIOR ELEVATIONS - NORTH & WEST - NEW WORK</td>
</tr>
<tr>
<td>A6.1</td>
<td></td>
<td>ENLARGED PLANS & ELEVATIONS - FIRST FLOOR - NEW WORK</td>
</tr>
<tr>
<td>A6.2</td>
<td></td>
<td>ENLARGED PLANS & ELEVATIONS - SECOND FLOOR - NEW WORK</td>
</tr>
<tr>
<td>A7.0</td>
<td></td>
<td>SCHEDULES & LEGEND</td>
</tr>
<tr>
<td>A8.0</td>
<td></td>
<td>ARCHITECTURAL DETAILS</td>
</tr>
<tr>
<td>M1.0</td>
<td></td>
<td>MECHANICAL PLANS - EXISTING & PARTIAL DEMOLITION</td>
</tr>
<tr>
<td>M2.0</td>
<td></td>
<td>MECHANICAL PLANS - EXISTING & PARTIAL DEMOLITION</td>
</tr>
<tr>
<td>M3.0</td>
<td></td>
<td>MECHANICAL PLANS - SUPPLY/RETURN DUCTWORK</td>
</tr>
<tr>
<td>M4.0</td>
<td></td>
<td>MECHANICAL PLANS - EXHAUST/VENTILATION DUCTWORK</td>
</tr>
<tr>
<td>M5.0</td>
<td></td>
<td>MECHANICAL PLANS - HYDRONIC PIPING</td>
</tr>
<tr>
<td>M6.0</td>
<td></td>
<td>MECHANICAL SCHEDULES</td>
</tr>
<tr>
<td>M7.0</td>
<td></td>
<td>DOC CONTROLS</td>
</tr>
<tr>
<td>P1.1</td>
<td></td>
<td>PLUMBING PLAN - FIRST FLOOR - EXISTING & DEMOLITION</td>
</tr>
<tr>
<td>P1.2</td>
<td></td>
<td>PLUMBING PLAN - SECOND FLOOR - EXISTING & DEMOLITION</td>
</tr>
<tr>
<td>P1.3</td>
<td></td>
<td>ENLARGED PLUMBING PLANS - FIRST FLOOR - DEMOLITION</td>
</tr>
<tr>
<td>P1.4</td>
<td></td>
<td>ENLARGED PLUMBING PLANS - SECOND FLOOR - DEMOLITION</td>
</tr>
<tr>
<td>P2.1</td>
<td></td>
<td>PLUMBING PLAN - FIRST FLOOR - NEW WORK</td>
</tr>
<tr>
<td>P2.2</td>
<td></td>
<td>PLUMBING PLAN - SECOND FLOOR - NEW WORK</td>
</tr>
</tbody>
</table>
1.3 SUPPLEMENTARY DRAWINGS

These supplementary drawings may not be a part of the contract but are included with the drawings for information.

1.3.1 Reference Drawings

The following reference drawings are intended only to show the original construction. All modifications and building renovations are not included. Drawings are the property of the Government and shall not be used for any purpose other than that intended by the contract. The drawings are full size.

<table>
<thead>
<tr>
<th>MCAS PW</th>
<th>TITLE</th>
<th>DRAWING NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW12436</td>
<td>STAIR SECTION</td>
<td></td>
</tr>
<tr>
<td>PW12438</td>
<td>WALL SECTIONS</td>
<td></td>
</tr>
<tr>
<td>PW12439</td>
<td>WALL SECTIONS</td>
<td></td>
</tr>
<tr>
<td>PW12441</td>
<td>TYPICAL DETAILS</td>
<td></td>
</tr>
<tr>
<td>PW12656</td>
<td>STAIR SECTION</td>
<td></td>
</tr>
<tr>
<td>PW12663</td>
<td>ROOF FRAMING PLAN</td>
<td></td>
</tr>
<tr>
<td>PW12664</td>
<td>WALL ELEVATIONS</td>
<td></td>
</tr>
<tr>
<td>PW12665</td>
<td>WALL ELEVATIONS</td>
<td></td>
</tr>
<tr>
<td>PW12689</td>
<td>ELECTRICAL SITE PLAN</td>
<td></td>
</tr>
<tr>
<td>PW12694</td>
<td>ROOF PLAN - LIGHTNING PROT. SYS.</td>
<td></td>
</tr>
<tr>
<td>PW12697</td>
<td>ELECTRICAL SCHEDULES</td>
<td></td>
</tr>
<tr>
<td>PW12701</td>
<td>FIRST FLOOR - FP</td>
<td></td>
</tr>
<tr>
<td>PW12702</td>
<td>SECOND FLOOR - FP</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 01 11 00

SUMMARY OF WORK

07/06

PART 1 GENERAL

1.1 GENERIC SPECIFICATION SECTIONS

Section 00 01 15 "List of Drawings"
Section 01 11 00 "Summary of Work"
Section 01 14 00 "Work Restrictions", in full.
Section 01 20 00.00 20 "Price and Payment Procedures", in full.
Section 01 30 00 "Administrative Requirements", in full.
Section 01 32 17.00 20 "Network Analysis Schedules (NAS)", does not apply.
Section 01 33 00 "Submittal Procedures", in full.
Section 01 35 13 "Special Project Procedures", does not apply.
Section 01 35 29 "Safety and Occupational Health Requirements", in full.
Section 01 35 40.00 20 "Environmental Management", in full.
Section 01 45 00.00 20 "Construction Quality Control", in full.
Section 01 62 35 "Recycled/Recovered Materials", in full.
Section 01 74 19 "Construction and Demolition Waste Management", in full.
Section 01 77 00.00 20 "Closeout Procedures", in full.
Section 01 78 23 "Operation and Maintenance Data", in full.
Section 02 41 00 "Demolition", in full.
Section 02 82 16.00 20 "Engineering Control of Asbestos Containing Materials", in full. See ACM survey attached at the end of this section.
Section 02 82 33.13 20 "Removal/Control and Disposal of Paint with Lead", in full. See LBP survey attached at the end of this section.
Section 03 30 00.00 20 "Cast-In-Place Concrete", in full.
Section 04 20 00.00 40 "Unit Masonry", in full.
Section 05 40 00 "Cold-Formed Metal Framing", does not apply.
Section 06 10 00 "Rough Carpentry", in full.
Section 06 20 00 "Finish Carpentry", as found herein.
Section 07 24 00 "Exterior Insulation and Finish Systems", does not apply.
Section 07 60 00 "Flashings and Sheet Metal", in full.
Section 07 61 14.00 20 "Steel Standing Seam Roofing", does not apply.
Section 07 84 00 "Firestopping", in full.
Section 07 92 00 "Joint Sealants", in full.
Section 08 11 13 "Steel Doors and Frames", in full.
Section 08 14 00 "Wood Doors", does not apply.
Section 08 36 13 "Sectional Overhead Doors" does not apply.
Section 08 51 13.00 20 "Aluminum Windows", does not apply.
Section 08 71 00 "Door Hardware", in full.

Section 08 91 00 "Metal Louvers", does not apply.
Section 09 22 00 "Metal Support Assemblies", in full.
Section 09 24 23 "Stucco", does not apply.
Section 09 29 00 "Gypsum Board", in full.
Section 09 30 00 "Ceramic Tile, Quarry Tile, and Paver Tile", in full.
Section 09 51 00 "Acoustical Ceilings", in full.
Section 09 65 00 "Resilient Floorings", in full.
Section 09 67 00.00 40 "Fluid-Applied Flooring", does not apply.
Section 09 68 00 "Carpets", in full.
Section 09 90 00 "Paints and Coatings", in full.
Section 10 21 13 "Toilet Compartments", in full.
Section 10 28 13 "Toilet Accessories", in full.
Section 10 44 16 "Fire Extinguishers", in full.
Section 13 34 19 "Metal Building Systems", does not apply.
Section 22 00 00 "Plumbing, General Purpose", in full.
"Mechanical Sound, Vibration, and Seismic control", does not apply.

"Basic Mechanical Materials and Methods", in full.

"Thermal Insulation for Mechanical Systems", in full.

"HVAC Testing/Adjusting/Balancing", in full.

"Direct Digital Control Systems", in full.

"Ductwork and Ductwork Accessories", in full.

"Basic Electrical Materials and Methods", in full.

"Interior Distribution System", in full.

"Interior Lighting", in full.

"Exterior Lighting", in full.

"Building Telecommunications Cabling System", in full.

"Interior Fire Detection and Alarm System", does not apply.

"Earthwork", does not apply.

"Soil Treatment for Subterranean Termite Control", does not apply.

"Bituminous Concrete Pavement", does not apply.

"Seeding", does not apply.

1.1.1 TECHNICAL

Refer to the "PROJECT TABLE OF CONTENTS" for listing of the technical sections.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

1.3 DEFINITIONS

Definitions pertaining to sustainable development are as defined in ASTM E 2114, Section 01 35 40.00 20 ENVIRONMENTAL MANAGEMENT, and as specified.

a. "Environmentally preferable products" have a lesser or reduced effect on the environment in comparison to conventional products and services. This comparison may consider raw materials acquisition, production, manufacturing, packaging, distribution, reuse, operation, maintenance, or disposal of the product.

b. "Indoor environmental quality" is the physical characteristics of the building interior that impact occupants, including air quality, illumination, acoustics, occupant control, thermal comfort, daylighting, and views.

c. "Operational performance" is the functional behavior of the building as a whole or of the building components.

d. "Sustainability" is the balance of environmental, economic, and societal considerations.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-07 Certificates

Energy Performance Rating

1.5 WORK COVERED BY CONTRACT DOCUMENTS

1.5.1 Project Description

This project provides for the complete renovation of Hanger 728 Administrative Spaces and construction of the following:

(a) Demolish existing interior electrical distribution system for lighting. Existing main distribution panel and building service will be reused in new work. Provide new lighting complete. Provide new work as indicated complete with all circuiting, fixture, outlets, switches and devices.

(b) Removal of existing suspending ceiling tiles and suspension system and providing of new.

(c) Renovate existing toilet facilities providing new plumbing fixtures, interior finishes, floor tiles, and toilet accessories.

(d) Remove existing non structural interior walls, as indicated. Replace or paint interior doors.

(e) Remove existing carpet or VCT throughout the building and provide floor finishes.
(f) Provide interior painting throughout the building.

(g) Demolish existing Variable Air Volume Air Handler, existing VAV boxes, exhaust fans and existing DDC system. All primary ductwork from Air Handler to VAV Boxes and all secondary ductwork from VAV boxes to air terminal devices shall be demolished. Existing water to air chiller heat shall be saved and reused.

Provide new Outside Air Unit and connect to new primary ductwork and deliver preconditioned outside air to fan coil units.

Provide new fan coil units and new ductwork throughout. Provide new hot and chilled water piping and route to existing chiller and boiler.

Provide new building exhaust system, including restroom exhaust, to balance minimum building outside air requirements. The exhaust system shall be incorporated into an energy recovery system with the building's outside air system.

Provide a new Web-Based DDC system for the entire building.

(h) Abatement of ACM/LBP materials.

(i) Demolish existing interior Communication/Data system and provide new Communication/Data systems complete with multimedia outlets and cabling as indicated. Existing Communication Data Racks and devices shall be reused in new work. Provide patch panels as necessary.

(j) Remove and transport all existing interior furniture to storage facility located on base. Prior to completion, all furniture is to be returned to the building and placed in rooms from which it was originally located.

1.5.2 Location

The work shall be located at MCAS Beaufort, approximately as indicated. The exact location will be shown by the Contracting Officer.

1.6 EXISTING WORK

In addition to "FAR 52.236-9, Protection of Existing Vegetation, Structures, Equipment, Utilities, and Improvements":

a. Remove or alter existing work in such a manner as to prevent injury or damage to any portions of the existing work which remain.

b. Repair or replace portions of existing work which have been altered during construction operations to match existing or adjoining work, as approved by the Contracting Officer. At the completion of operations, existing work shall be in a condition equal to or better than that which existed before new work started.

1.7 LOCATION OF UNDERGROUND FACILITIES

Obtain digging permits prior to start of excavation by contacting the Contracting Officer 15 calendar days in advance. Verify the elevations of existing piping, utilities, and any type of underground obstruction. Verify elevations before installing new work closer than nearest manhole or other
structure at which an adjustment in grade can be made.

1.7.1 Notification Prior to Excavation

Notify the Contracting Officer at least 15 days prior to starting excavation work.

1.8 Navy and Marine Corps (NMCI) Coordination Requirements

1.8.1 NMCI Contractor Access

The NMCI Contractor must be allowed access to the facility towards the end of construction (finishes 90% complete, rough-in 100% complete, Inside Plant (ISP)/Outside Plant (OSP) infrastructure in place) to provide equipment in the telecommunications rooms and make final connections. The construction contractor will be required to coordinate his efforts with the NMCI contractor to facilitate joint use of building spaces during the final phases of construction. After the Contracting Officer has facilitated coordination meetings between the two contractors, the construction contractor must, within one week, incorporate the effort of additional contractor coordination into his construction schedule to demonstrate his plan for maintaining the contract duration.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

Not used.

-- End of Section --
<table>
<thead>
<tr>
<th>TRANSMITTAL SPEC NO</th>
<th>TRANSMITTAL SPEC sect</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>GOVT. CLASSIFICATION</th>
<th>APPROVAL NEEDED BY</th>
<th>MATERIAL NEEDED BY</th>
<th>CODE</th>
<th>DATE OF ACTION</th>
<th>CONTRACTOR ACTION</th>
<th>DATE FWD TO APPR AUTH</th>
<th>DATE RCD FROM CONTR</th>
<th>DATE RCD FROM OTHER REVIEWER</th>
<th>DATE RCD FROM OTH REVIEWER</th>
<th>MAILED TO CONTR/</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
<td>(l)</td>
<td>(m)</td>
<td>(n)</td>
<td>(o)</td>
<td>(p)</td>
</tr>
<tr>
<td>01 11 00</td>
<td></td>
<td>SD-07 Certificates</td>
<td>Energy Performance Rating</td>
<td></td>
</tr>
<tr>
<td>06 61 16</td>
<td></td>
<td>SD-02 Shop Drawings</td>
<td>Detail Drawings</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>Solid polymer material</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-10 Operation and Maintenance</td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>07 41 63</td>
<td></td>
<td>SD-02 Shop Drawings</td>
<td>Clean-up</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>Roofing Panels</td>
<td>1.5.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>Factory Color Finish</td>
<td>1.5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>Closure Materials</td>
<td>1.5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>Insulation</td>
<td>1.5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>Pressure Sensitive Tape</td>
<td>1.5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>Sealants and Caulking</td>
<td>1.5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>Aluminized Steel Repair Paint</td>
<td>1.5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>Accessories</td>
<td>1.5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-04 Samples</td>
<td>Manufacturer's color charts and chips</td>
<td>1.5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-05 Design Data</td>
<td>Wind design analysis</td>
<td>1.5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td>ACTIVITY NO</td>
<td>CONTRACTOR: SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>07 41 63</td>
<td></td>
</tr>
<tr>
<td>Leakage Tests</td>
<td></td>
</tr>
<tr>
<td>Wind Uplift Test Report</td>
<td></td>
</tr>
<tr>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
</tr>
<tr>
<td>Installation of Roof panel</td>
<td></td>
</tr>
<tr>
<td>assembles</td>
<td></td>
</tr>
<tr>
<td>SD-11 Closeout Submittals</td>
<td></td>
</tr>
<tr>
<td>Warranty</td>
<td></td>
</tr>
<tr>
<td>Information Form and Placard</td>
<td></td>
</tr>
<tr>
<td>Manufacturer’s field inspection reports</td>
<td></td>
</tr>
<tr>
<td>Instructions</td>
<td></td>
</tr>
<tr>
<td>07 42 13</td>
<td></td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>Installation Drawings</td>
<td></td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td>sustainable acquisition</td>
<td></td>
</tr>
<tr>
<td>Factory Color Finish</td>
<td></td>
</tr>
<tr>
<td>Closure Materials</td>
<td></td>
</tr>
<tr>
<td>Pressure Sensitive Tape</td>
<td></td>
</tr>
<tr>
<td>Sealants and Caulking</td>
<td></td>
</tr>
<tr>
<td>Aluminized Steel Repair Paint</td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td></td>
</tr>
<tr>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td>Leakage Tests</td>
<td></td>
</tr>
<tr>
<td>Wind Load Tests</td>
<td></td>
</tr>
<tr>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
</tr>
</tbody>
</table>
SUBMITTAL REGISTER

TITLE AND LOCATION
Renovate Hanger 728, Administrative Spaces

<table>
<thead>
<tr>
<th>ACTIVITY NO</th>
<th>TRANSMITTAL NO</th>
<th>SPEC</th>
<th>SECTION</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>CONTRACT: SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>07 42 13</td>
<td></td>
<td></td>
<td>Installation of Wall panels</td>
<td>SD-11 Closeout Submittals</td>
<td>1.5.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>07 42 13</td>
<td></td>
<td></td>
<td>Warranty</td>
<td>SD-11 Closeout Submittals</td>
<td>1.8</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>07 42 13</td>
<td></td>
<td></td>
<td>Maintenance Instructions</td>
<td>SD-11 Closeout Submittals</td>
<td>1.5.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 14 02</td>
<td></td>
<td></td>
<td>Detail Drawings</td>
<td>SD-02 Shop Drawings</td>
<td>1.2</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 14 02</td>
<td></td>
<td></td>
<td>Installation</td>
<td>SD-02 Shop Drawings</td>
<td>3.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 26 13</td>
<td></td>
<td></td>
<td>SD-10 Operation and Maintenance</td>
<td>SD-02 Shop Drawings</td>
<td>3.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 26 13</td>
<td></td>
<td></td>
<td>Data</td>
<td>SD-02 Shop Drawings</td>
<td>3.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 26 13</td>
<td></td>
<td></td>
<td>Approved Manufacturer's Instructions</td>
<td>SD-02 Shop Drawings</td>
<td>3.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 26 13</td>
<td></td>
<td></td>
<td>Protection and Cleaning</td>
<td>SD-02 Shop Drawings</td>
<td>3.1.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 51 13</td>
<td></td>
<td></td>
<td>Types</td>
<td>SD-02 Shop Drawings</td>
<td>2.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 51 13</td>
<td></td>
<td></td>
<td>Location</td>
<td>SD-02 Shop Drawings</td>
<td>1.4</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 51 13</td>
<td></td>
<td></td>
<td>Installation</td>
<td>SD-02 Shop Drawings</td>
<td>3.1</td>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

REMINDERS

- SD-02 Shop Drawings
- SD-03 Product Data

DATE: 07 42 13

COORDINATE: 1.5.1

CLASSIFICATION: G

ACTION CODE: SD-11

DATE FWD TO APPR AUTH:

DATE RCD FROM CONTR:

DATE RCD FROM OTHER REVIEWER:

DATE RCD FROM OTH REVIEWER:

DATE RCD FRM APPR AUTH:

REMARKS: (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r)
<table>
<thead>
<tr>
<th>TRANSMITTAL NO</th>
<th>SPEC NO</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>GOVERNOR CLASSIFICATION</th>
<th>CONTRACTOR: SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Material</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Locking Devices</td>
<td>2.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handles</td>
<td>2.3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Finish</td>
<td>2.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>components</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assembly</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color chips</td>
<td>1.5.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>12 21 00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Window Blinds</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Window Blinds</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-10 Operation and Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Window Blinds</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-02 Shop Drawings</td>
<td>21 13 13.00 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shop Drawings</td>
<td>1.5.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pipe</td>
<td>2.1.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fittings</td>
<td>2.1.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valves</td>
<td>2.1.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sprinklers</td>
<td>2.1.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pipe hangars and supports</td>
<td>2.1.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechanicalcouplings</td>
<td>2.1.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seismic Bracing</td>
<td>2.1.4</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTIVITY NO</td>
<td>TRANSMITTAL SPEC NO</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>CLASSIFICATION</td>
<td>GOVERNOR</td>
<td>APPROVAL NEEDED BY</td>
<td>MATERIAL NEEDED BY</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>21 13 13.00 20</td>
<td>SD-05 Design Data</td>
<td>Hydraulic Calculations</td>
<td>1.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Preliminary Test Report</td>
<td>3.5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sprinkler System Installer</td>
<td>1.5.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>As-built drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>On-site training</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 31 76</td>
<td>SD-02 Shop Drawings</td>
<td>Wiring Diagrams</td>
<td>3.2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>System Layout</td>
<td>1.4.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>System Operation</td>
<td>2.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notification Appliances</td>
<td>2.17</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amplifiers</td>
<td>2.15</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>As-Built Drawings</td>
<td>3.6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Data And Computer</td>
<td>1.4.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fire Alarm And Mass Notification</td>
<td>2.14</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control Panel (FACP/FMCP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Printers</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Video Display Unit (VDU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terminal cabinets</td>
<td>3.2.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manual stations</td>
<td>2.16</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transmitters</td>
<td>2.23</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Batteries
2.13.1 G

Battery chargers
2.13.2 G

Smoke sensors
2.10 G

Thermal sensors
2.11 G

Wiring
2.24 G

Notification appliances
2.17 G

Addressable interface devices
2.7 G

Amplifiers
2.15 G

Tone generators
2.15 G

Digitalized voice generators
2.15 G

Firefighter telephone
G

Waterflow detectors
2.20 G

Tamper switches
2.19 G

Electromagnetic door holders
2.21 G

Remote fire alarm control units
G

Radio transmitter and interface panels
2.23.1 G

SD-05 Design Data

System Operation
2.3 G

Battery power
2.13.1.2 G

Battery power
2.23.1 G

SD-06 Test Reports

Field Quality Control
3.6

Testing Procedures
3.6.1 G

Smoke sensor testing
2.10.5 G

SD-07 Certificates
<table>
<thead>
<tr>
<th>ACTIVITY NO</th>
<th>TRANSMITTAL SPEC NO</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>PARAGRAPH/H</th>
<th>CLASIFICATION A/E</th>
<th>APPROVAL NEEDED BY</th>
<th>MATERIAL NEEDED BY</th>
<th>CODE</th>
<th>ACTION</th>
<th>DATE OF ACTION</th>
<th>DATE FWD TO APPR AUTH</th>
<th>DATE RCD FROM CONTR</th>
<th>DATE FWD TO OTHER REVIEWER</th>
<th>DATE RCD FROM OTHER REVIEWER</th>
<th>DATE OF ACTION</th>
<th>MAILED TO CONTR</th>
<th>DATE RCD FRM APPR AUTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 31 76</td>
<td>Installer</td>
<td>1.6.1.4</td>
<td>SD-09 Manufacturer’s Field Reports</td>
<td></td>
<td></td>
<td>SD-10 Operation and Maintenance Data</td>
<td></td>
<td>(O&M) Instructions</td>
<td>G</td>
<td>Instruction of Government</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART 1 GENERAL

1.1 REFERENCES

Various publications are referenced in other sections of the specifications to establish requirements for the work. These references are identified in each section by document number, date and title. The document number used in the citation is the number assigned by the standards producing organization, (e.g. ASTM B 564 Nickel Alloy Forgings). However, when the standards producing organization has not assigned a number to a document, an identifying number has been assigned for reference purposes.

1.2 ORDERING INFORMATION

The addresses of the standards publishing organizations whose documents are referenced in other sections of these specifications are listed below, and if the source of the publications is different from the address of the sponsoring organization, that information is also provided. Documents listed in the specifications with numbers which were not assigned by the standards producing organization should be ordered from the source by title rather than by number.

ACOUSTICAL SOCIETY OF AMERICA (ASA)
2 Huntington Quadrangle, Suite 1NO1
Melville, NY 11747-4502
Ph: 516-576-2360
Fax: 516-576-2377
E-mail: asa@aip.org
Internet: http://asa.aip.org

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)
30 West University Drive
Arlington Heights, IL 60004-1893
Ph: 847-394-0150
Fax: 847-253-0088
E-mail: amca@amca.org
Internet: http://www.amca.org

ALUMINUM ASSOCIATION (AA)
National Headquarters
1525 Wilson Boulevard, Suite 600
Arlington, VA 22209
Ph: 703-358-2960
Fax: 703-358-2961
Internet: http://www.aluminum.org

AMERICAN ARCHITECTURAL MANUFACTURERS ASSOCIATION (AAMA)
1827 Walden Office Square
Suite 550
Schaumburg, IL 60173-5774
Ph: 847-303-5664
Fax: 847-303-5774
E-mail: webmaster@aamanet.org
Internet: http://www.aamanet.org

AMERICAN IRON AND STEEL INSTITUTE (AISI)
1140 Connecticut Avenue, NW, Suite 705
Washington, DC 20036
Ph: 202-452-7100
Fax: 202-463-6577
E-mail: webmaster@steel.org
Internet: http://www.steel.org

AMERICAN LUMBER STANDARDS COMMITTEE (ALSC)
P.O. Box 210
Germantown, MD 20875-0210
Ph: 301-972-1700
Fax: 301-540-8004
E-mail: alsc@alsc.org
Internet: http://www.alsc.org

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)
1801 Alexander Bell Drive
Reston, VA 20191-4400
Ph: 703-295-6300 - 800-548-2723
Fax: 703-295-6333
E-mail: member@asce.org
Internet: http://www.asce.org

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)
1791 Tullie Circle, NE
Atlanta, GA 30329
Ph: 800-527-4723 or 404-636-8400
Fax: 404-321-5478
E-mail: ashrae@ashrae.org
Internet: http://www.ashrae.org

AMERICAN WATER WORKS ASSOCIATION (AWWA)
6666 West Quincy Avenue
Denver, CO 80235
Ph: 800-926-7337
Fax: 303-347-0804
E-mail: smorrison@awwa.org
Internet: http://www.awwa.org

AMERICAN WELDING SOCIETY (AWS)
550 N.W. LeJeune Road
Miami, FL 33126
Ph: 800-443-9353 - 305-443-9353
Fax: 305-443-7559
E-mail: info@aws.org or customerservice@awspubs.com
Internet: http://www.aws.org

APA - THE ENGINEERED WOOD ASSOCIATION (APA)
7011 South 19th St.
Tacoma, WA 98466-5333
Ph: 253-565-6600
Fax: 253-565-7265
E-mail: help@apawood.org
Internet: http://www.apawood.org
INTERNATIONAL ASSOCIATION OF PLUMBING AND MECHANICAL OFFICIALS (IAPMO)
4755 E. Philadelphia St.
Ontario, CA 91761
Ph: 909-472-4100
Fax: 909-472-4150
E-mail: iampo@iampo.org
Internet: www.iampo.org

INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC)
3, rue de Varembe, P.O. Box 131
CH-1211 Geneva 20, Switzerland
Ph: 41-22-919-0211
Fax: 41-22-919-0300
E-mail: custserv@iec.ch
Internet: http://www.iec.ch

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)
1, ch. de la Voie-Creuse
Case Postale 56
CH-1211 Geneve 20 Switzerland
Ph: 41-22-749-01-11
Fax: 41-22-733-34-30
E-mail: central@iso.ch
Internet: http://www.iso.org

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)
127 Park Street, NE
Vienna, VA 22180
Ph: 703-281-6613
Fax: 703-281-6671
E-mail: info@mss-hq.com
Internet: http://www.mss-hq.com

METAL BUILDING MANUFACTURERS ASSOCIATION (MBMA)
1300 Sumner Avenue
Cleveland, OH 44115-2851
Ph: 216-241-7333
Fax: 216-241-0105
E-mail: mbma@mbma.com
Internet: http://www.mbma.com

NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM)
800 Roosevelt Road, Bldg C, Suite 312
Glen Ellyn, IL 60137
Ph: 630-942-6591
Fax: 630-790-3095
E-mail: wlewis7@cox.net (Vernon Lewis, technical consultant)
Internet: http://www.naamm.org

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)
1300 North 17th Street, Suite 1752
Rosslyn, VA 22209
Ph: 703-841-3200
Fax: 703-841-5900
Internet: http://www.nema.org/
NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)
1 Batterymarch Park
Quincy, MA 02169-7471
Ph: 617-770-3000 or 800-344-3555
Fax: 617-770-0700
E-mail: webmaster@nfpa.org
Internet: http://www.nfpa.org

NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)
10255 West Higgins Road, Suite 600
Rosemont, IL 60018-5607
Ph: 847-299-9070
Fax: 847-299-1183
E-mail: form available online
Internet: http://www.nrca.net

NSF INTERNATIONAL (NSF)
789 North Dixboro Road
P.O. Box 130140
Ann Arbor, MI 48113-0140
Ph: 734-769-8010 or 800-NSF-MARK
Fax: 734-769-0109
E-mail: info@nsf.org
Internet: http://www.nsf.org

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)
4201 Lafayette Center Drive
Chantilly, VA 20151-1219
Ph: 703-803-2980
Fax: 703-803-3732
E-mail: info@smacna.org
Internet: http://www.smacna.org

SOCIETY OF AUTOMOTIVE ENGINEERS INTERNATIONAL (SAE)
400 Commonwealth Drive
Warrendale, PA 15096-0001
Ph: 724-776-4970
Fax: 724-776-0790
E-mail: customerservice@sae.org
Internet: http://www.sae.org

THE SOCIETY FOR PROTECTIVE COATINGS (SSPC)
40 24th Street, 6th Floor
Pittsburgh, PA 15222-4656
Ph: 412-281-2331
Fax: 412-281-9992
E-mail: info@sspc.org
Internet: http://www.sspc.org

UNDERWRITERS LABORATORIES (UL)
2600 N.W. Lake Road
Camas, WA 98607-8542
Ph: 877-854-3577
Fax: 360-817-6278
E-mail: CEC.us@us.ul.com
Internet: http://www.ul.com/
U.S. DEPARTMENT OF DEFENSE (DOD)
Order DOD Documents from:
Room 3A750-The Pentagon
1400 Defense Pentagon
Washington, DC 20301-1400
Ph: 703-571-3343
FAX: 215-697-1462
E-mail: pia@hq.afis.asd.mil
Internet: http://www.dod.gov
Obtain Military Specifications, Standards and Related Publications from:
Acquisition Streamlining and Standardization Information System (ASSIST)
Department of Defense Single Stock Point (DODSSP)
Document Automation and Production Service (DAPS)
Building 4/D
700 Robbins Avenue
Philadelphia, PA 19111-5094
Ph: 215-697-6396 - for account/password issues
Internet: http://assist.daps.dla.mil/online/start/; account registration required
Obtain Unified Facilities Criteria (UFC) from:
Whole Building Design Guide (WBDG)
National Institute of Building Sciences (NIBS)
1090 Vermont Avenue NW, Suite 700
Washington, CD 20005
Ph: 202-289-7800
Fax: 202-289-1092
Internet: http://www.wbdg.org/references/docs_refs.php

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)
Ariel Rios Building
1200 Pennsylvania Avenue, N.W.
Washington, DC 20004
Ph: 202-272-0167
for Fax and E-mail see below
Internet: http://www.epa.gov
--- Some EPA documents are available only from:
National Technical Information Service (NTIS)
5301 Shawnee Road
Alexandria, VA 22312
Ph: 703-605-6050 or 1-688-584-8332
Fax: 703-605-6900
E-mail: info@ntis.gov
Internet: http://www.ntis.gov

U.S. GENERAL SERVICES ADMINISTRATION (GSA)
General Services Administration
1800 F Street, NW
Washington, DC 20405
Ph: 202-501-0800
Internet: www.GSA.gov
Obtain documents from:
Acquisition Streamlining and Standardization Information System (ASSIST)
Department of Defense Single Stock Point (DODSSP)
Document Automation and Production Service (DAPS)
Building 4/D
700 Robbins Avenue
Renovate Hanger 728, Administrative Spaces

Philadelphia, PA 19111-5094
Ph: 215-697-6396 - for account/password issues
Internet: http://assist.daps.dla.mil/online/start/; account registration required

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)
8601 Adelphi Road
College Park, MD 20740-6001
Ph: 866-272-6272
Fax: 301-837-0483
E-mail: contactcenter@gpo.gov
Internet: http://www.archives.gov
Order documents from:
Superintendent of Documents
U.S. Government Printing Office (GPO)
732 North Capitol Street, NW
Washington, DC 20401
Ph: 202-512-1800
Fax: 202-512-2104
E-mail: contactcenter@gpo.gov
Internet: http://www.gpoaccess.gov

U.S. NAVAL FACILITIES ENGINEERING COMMAND (NAVFAC)
1322 Patterson Ave. SE, Suite 1000
Washington Navy Yard, DC 20374
Ph: 757-322-4200
Fax: 757-322-4416
Internet: http://www.navfac.navy.mil

WINDOW AND DOOR MANUFACTURERS ASSOCIATION (WDMA)
401 N. Michigan Ave., Suite 2200
Chicago, IL 60611
Ph: 312-321-6802
Fax: 312-673-6922
E-mail: wdma@wdma.com
Internet: http://www.wdma.com

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

Not used

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN LUMBER STANDARDS COMMITTEE (ALSC)

APA - THE ENGINEERED WOOD ASSOCIATION (APA)

ARCHITECTURAL WOODWORK INSTITUTE (AWI)

AWI Qual Stds (8th Edition) AWI Quality Standards

ASME INTERNATIONAL (ASME)

ASME B18.2.1 (2010) Square and Hex Bolts and Screws (Inch Series)

ASME B18.2.2 (2010) Standard for Square and Hex Nuts

ASTM INTERNATIONAL (ASTM)

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

ANSI/BHMA A156.9 (2010) Cabinet Hardware

HARDWOOD PLYWOOD AND VENEER ASSOCIATION (HPVA)

WINDOW AND DOOR MANUFACTURERS ASSOCIATION (WDMA)

WDMA I.S. 4 (2009) Water-Repellent Preservative Non-Pressure Treatment for Millwork

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control
The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

1.3 DETAIL DRAWINGS

The Contractor shall submit detail drawings showing fabricated items and special mill and woodwork items. Drawings shall indicate materials and details of construction, methods of fastening, erection, and installation.

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver lumber, plywood, trim, and millwork to job site in an undamaged condition. Stack materials to ensure ventilation and drainage. Protect against dampness before and after delivery. Store materials under cover in a well-ventilated enclosure and protect against extreme changes in temperature and humidity. Do not store products in building until wet trade materials are dry.

1.5 QUALITY ASSURANCE

1.5.1 Plywood

Each sheet of plywood shall bear the mark of a recognized association or independent inspection agency that maintains continuing control over quality of the plywood. Mark shall identify plywood by species group or span rating, and shall show exposure durability classification, grade, and compliance with APA PS 1.

1.5.2 Nonpressure-Treated Woodwork and Millwork

Mark, stamp, or label, indicating compliance with WDMA I.S. 4.

PART 2 PRODUCTS

2.1 WOOD

2.1.1 Sizes and Patterns of Wood Products

Yard and board lumber sizes shall conform to ALSC PS 20. Provide shaped lumber and millwork in the patterns indicated and standard patterns of the association covering the species. Size references, unless otherwise specified, are nominal sizes, and actual sizes shall be within manufacturing tolerances allowed by the applicable standard.

2.1.2 Hardwood Plywood

HPVA HP-1, Type II (Interior), Premium (A) Grade, hardwood veneer core construction, face veneers of birch, of thickness indicated.

2.2 COUNTER TOPS

2.2.1 Solid Surface

Manufactured from homogeneous solid sheets for filled plastic resin complying with materials and performance requirements of ANSI Z 124.3, for Type 5 or Type 6, without a precoated finish.
2.3 MOISTURE CONTENT OF WOOD PRODUCTS

Air-dry or kiln-dry lumber. Kiln-dry treated lumber after treatment. Maximum moisture content of wood products at time of delivery to the job site, and when installed, shall be as follows:

a. Interior Finish Lumber, Trim, and Millwork 1-1/4 Inches Nominal or Less in Thickness: 6 percent on 85 percent of the pieces and 8 percent on remainder.

b. Moisture content of other materials shall be in accordance with the applicable standards.

2.4 HARDWARE

Provide sizes, types, and spacings of manufactured building materials recommended by the product manufacturer except as otherwise indicated or specified.

2.4.1 Wood Screws

ASME B18.6.1.

2.4.2 Bolts, Nuts, Lag Screws, and Studs

ASME B18.2.1 and ASME B18.2.2.

2.4.3 Nails

Nails shall be the size and type best suited for the purpose and shall conform to ASTM F 547. Nails shall be hot-dip galvanized or aluminum when used on exterior work. For siding, length of nails shall be sufficient to extend 1-1/2 inches into supports, including wood sheathing over framing. Screws for use where nailing is impractical shall be size best suited for purpose.

2.5 FABRICATION

2.5.1 Quality Standards (QS)

The terms "Premium," "Custom," and "Economy" refer to the quality grades defined in AWI Qual Stds. Items not specified to be of a specific grade shall be Custom grade. The AWI QS is superseded by all contract document requirements indicated or stated herein.

2.5.2 Countertops

Solid surface fabrication in accordance with Section 06 61 16.

2.5.3 Cabinets

Wall and base cabinets and vanity cabinets shall be of the same construction and appearances. Fabricate with solid ends and frame fronts, or with frames all around. Frames shall be solid hardwood not less than 3/4 by 1-1/2 inches. Ends, bottom, back, partitions, and doors shall be hardwood plywood. Mortise and tenon, dovetail, or dowel and glue joints to produce a rigid unit. Cover exposed edges of plywood with hardwood strips. Doors, frames, and solid exposed ends shall be 3/4 inch thick; bottom,
partitions, and framed ends 1/2 inch minimum; shelves 5/8 inch minimum; back 1/4 inch minimum.

2.5.3.1 Cabinet Hardware

ANSI/BHMA A156.9. Provide cabinet hardware including two self-closing hinges for each door, two side-mounted metal drawer slides for each drawer and pulls for all doors and drawers as follows. Hardware exposed to view shall be bright chromium plated. All cabinet hardware shall comply with the following requirements:

a. Extension drawer slides: ANSI/BHMA A156.9, type B35071.

b. Drawer catch shall be heavy duty magnetic catch.

c. Full surface hinges: ANSI/BHMA 156.9 type 81131, 1-1/2 inches.

d. Bar type pulls: ANSI/BHMA A156.9, type B12012, 4 inch overall length.

e. Drawer catch shall be heavy duty magnetic catch.

2.5.3.2 Finish

Provide a natural factory finish on wood surfaces after fabrication. Finish shall be fabricator's standard natural finish, except that it shall be equivalent to one coat of sealer and one coat of spar varnish on all surfaces and a second coat of spar varnish on surfaces exposed to view. Sand lightly and wipe clean between coats.

2.5.4 Casework With Transparent Finish (CTF)

2.5.4.1 AWI Quality Grade (CTF)

Custom grade.

PART 3 EXECUTION

3.1 FINISH WORK

Provide sizes, materials, and designs as indicated and as specified. Apply primer to finish work before installing. Where practicable, shop assemble and finish items of built-up millwork. Joints shall be tight and constructed in a manner to conceal shrinkage. Miter trim and moldings at exterior angles and cope at interior angles and at returns. Material shall show no warp after installation. Install millwork and trim in maximum practical lengths. Fasten finish work with finish nails. Provide blind nailing where practicable. Set face nails for putty stopping.

3.2 MISCELLANEOUS

3.2.1 Counters

Construct as indicated. Conceal fastenings where practicable, fit counter neatly, install in a rigid and substantial manner, and scribe to adjoining surfaces. Provide counter sections in longest lengths practicable; keep joints in tops to a minimum; and where joints are necessary, provide tight hairline joints drawn up with concealed-type heavy pull-up bolts. Glue joints with water-resistant glue and, in addition, make rigid and substantial with screws, bolts, or other approved fastenings.
3.2.2 Cabinets

Install level, plumb, and tight against adjacent walls. Secure cabinets to walls with concealed toggle bolts, and secure top to cabinet with concealed screws. Make cut-outs for fixtures to templates supplied by fixture manufacturer. Carefully locate cut-outs for pipes so that edges of holes will be covered by escutcheons.

-- End of Section --
SECTION 06 61 16
SOLID POLYMER (SOLID SURFACING) FABRICATIONS
08/10

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

INTERNATIONAL ASSOCIATION OF PLUMBING AND MECHANICAL OFFICIALS (IAPMO)

IAPMO Z124.3 (2005) Plastic Lavatories

IAPMO Z124.6 (1997) Plastic Sinks

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

ANSI/NEMA LD 3 (2005) Standard for High-Pressure Decorative Laminates

NSF INTERNATIONAL (NSF)

NSF/ANSI 51 (2009e) Food Equipment Materials

1.2 SYSTEM DESCRIPTION

a. Work under this section includes countertops, aprons, backsplashes and other items utilizing solid polymer (solid surfacing) fabrication as
shown on the drawings and as described in this specification. Do not change source of supply for materials after work has started, if the appearance of finished work would be affected.

b. In most instances, installation of solid polymer fabricated components and assemblies will require strong, correctly located structural support provided by other trades. To provide a stable, sound, secure installation, close coordination is required between the solid polymer fabricator/installer and other trades to ensure that necessary structural wall support, cabinet counter top structural support, proper clearances, and other supporting components are provided for the installation of wall panels, countertops, shelving, and all other solid polymer fabrications to the degree and extent recommended by the solid polymer manufacturer.

c. Appropriate staging areas for solid polymer fabrications. Allow variation in component size and location of openings of plus or minus 1/8 inch.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Detail Drawings; G
SD-03 Product Data
 Solid polymer material
SD-10 Operation and Maintenance Data
 Clean-up

1.4 QUALITY ASSURANCE

1.4.1 Qualifications

To ensure warranty coverage, solid polymer fabricators shall be certified to fabricate by the solid polymer material manufacturer being utilized. Mark all fabrications with the fabricator's certification label affixed in an inconspicuous location. Fabricators shall have a minimum of 5 years of experience working with solid polymer materials. Submit solid polymer manufacturer's certification attesting to fabricator qualification approval.

1.5 DELIVERY, STORAGE, AND HANDLING

Do not deliver materials to project site until areas are ready for installation. Deliver components and materials to the site undamaged, in containers clearly marked and labeled with manufacturer's name. Materials shall be stored indoors and adequate precautions taken to prevent damage to finished surfaces. Provide protective coverings to prevent physical damage or staining following installation, for duration of project.
1.6 WARRANTY

Provide manufacturer's warranty of ten years against defects in materials, excluding damages caused by physical or chemical abuse or excessive heat. Warranty shall provide for material and labor for replacement or repair of defective material for a period of ten years after component installation.

PART 2 PRODUCTS

2.1 MATERIAL

Provide solid polymer material that is a homogeneous filled solid polymer; not coated, laminated or of a composite construction; meeting IAPMO Z124.3 and IAPMO Z124.6 requirements. Material shall have minimum physical and performance properties specified. Superficial damage to a depth of 0.01 inch shall be repairable by sanding or polishing. Material thickness shall be as indicated on the drawings. In no case shall material be less than 1/4 inch in thickness.

2.1.1 Cast, 100 Percent Acrylic Polymer Solid Surfacing Material

Cast, 100 percent acrylic solid polymer material shall be composed of acrylic polymer, mineral fillers, and pigments and shall meet the following minimum performance requirements:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT</th>
<th>TEST PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>5800 psi (min.)</td>
<td>ASTM D 638</td>
</tr>
<tr>
<td>Hardness</td>
<td>55-Barcol Impressor (min.)</td>
<td>ASTM D 2583</td>
</tr>
<tr>
<td>Thermal Expansion</td>
<td>.000023 in/in/F (max.)</td>
<td>ASTM D 696</td>
</tr>
<tr>
<td>Boiling water Surface Resistance</td>
<td>No Change</td>
<td>ANSI/NEMA LD 3-3.05</td>
</tr>
<tr>
<td>High Temperature Resistance</td>
<td>No Change</td>
<td>ANSI/NEMA LD 3-3.06</td>
</tr>
<tr>
<td>Impact Resistance (Ball drop)</td>
<td></td>
<td>ANSI/NEMA LD 3-303</td>
</tr>
<tr>
<td>1/4" sheet</td>
<td>36", 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>1/2" sheet</td>
<td>140", 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>3/4" sheet</td>
<td>200", 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>Mold & Mildew Growth</td>
<td>No growth</td>
<td>ASTM G 21</td>
</tr>
<tr>
<td>Bacteria Growth</td>
<td>No Growth</td>
<td>ASTM G 21</td>
</tr>
<tr>
<td>Liquid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.1.2 Material Patterns and Colors

Patterns and colors for all solid polymer components and fabrications shall be those indicated on the project drawings. Pattern and color shall occur, and shall be consistent in appearance, throughout the entire depth (thickness) of the solid polymer material.

2.1.3 Surface Finish

Exposed finished surfaces and edges shall receive a uniform appearance. Exposed surface finish shall be semigloss; gloss rating of 25-50.

2.2 ACCESSORY PRODUCTS

Accessory products, as specified below, shall be manufactured by the solid polymer manufacturer or shall be products approved by the solid polymer manufacturer for use with the solid polymer materials being specified.

2.2.1 Seam Adhesive

Seam adhesive shall be a two-part adhesive kit to create permanent, inconspicuous, non-porous, hard seams and joints by chemical bond between solid polymer materials and components to create a monolithic appearance of the fabrication. Adhesive shall be approved by the solid polymer manufacturer. Adhesive shall be color-matched to the surfaces being bonded where solid-colored, solid polymer materials are being bonded together. The seam adhesive shall be clear or color matched where particulate patterned, solid polymer materials are being bonded together.

2.2.2 Silicone Sealant

Sealant shall be a mildew-resistant, FDA and OSHA Nationally Recognized Testing Laboratory (NRTL) listed silicone sealant or caulk in a clear formulation. The silicone sealant shall be approved for use by the solid polymer manufacturer. Use sealant to seal all expansion joints between solid polymer components and all joints between solid polymer components and other adjacent surfaces such as walls, floors, ceiling, and plumbing fixtures.

2.2.3 Conductive Tape

Conductive tape shall be manufacturer's standard foil tape, 4 mils thick, applied around the edges of cut outs containing hot or cold appliances.

2.2.4 Mounting Hardware

Provide mounting hardware, including sink/bowl clips, inserts and fasteners
for attachment of undermount sinks and lavatories.

2.3 FABRICATIONS

Components shall be factory or shop fabricated to sizes and shapes indicated, to the greatest extent practical, in accordance with approved Shop Drawings and manufacturer’s requirements. Provide factory cutouts for sinks, lavatories, and plumbing fixtures where indicated on the drawings. Contours and radii shall be routed to template, with edges smooth. Defective and inaccurate work will be rejected. Submit product data indicating product description, fabrication information, and compliance with specified performance requirements for solid polymer, joint adhesive, sealants, and heat reflective tape. Both the manufacturer of materials and the fabricator shall submit a detailed description of operations and processes in place that support efficient use of natural resources, energy efficiency, emissions of ozone depleting chemicals, management of water and operational waste, indoor environmental quality, and other production techniques supporting sustainable design and products.

2.3.1 Joints and Seams

Form joints and seams between solid polymer components using manufacturer's approved seam adhesive. Joints shall be inconspicuous in appearance and without voids to create a monolithic appearance.

2.3.2 Edge Finishing

Rout and finish component edges to a smooth, uniform appearance and finish. Edge shapes and treatments, including any inserts, shall be as detailed on the drawings. Rout all cutouts, then sand all edges smooth. Repair or reject defective or inaccurate work.

2.3.3 Counter and Vanity Top Splashes

Fabricate backsplashes and end splashes from 1/2 inch thick solid surfacing material to be 4 inches high in conformance with dimensions and shapes as indicated on the drawings. Backsplashes and end splashes shall be provided for all counter tops and vanity tops.

2.3.3.1 End Splashes & Aprons

End splashes shall be provided loose for installation at the jobsite after horizontal surfaces to which they are to be attached have been installed.

2.3.4 Counter and Vanity Tops

Fabricate all solid surfacing, solid polymer counter top and vanity top components from 1/2 inch thick material. Edge details, dimensions, locations, and quantities shall be as indicated on the Drawings. Counter tops shall be complete with 4 inch high loose and loose endsplashes at all locations. Attach 2 inch wide reinforcing strip of polymer material under each horizontal counter top seam.

2.3.4.1 Counter Top With Sink

a. Stainless Steel or Vitreous China Sink. Countertops with sinks shall include cutouts to template as furnished by the sink manufacturer. Manufacturer's standard sink mounting hardware for shall be provided. Seam between sink and counter top shall be sealed.
with silicone sealant. Sink, faucet, and plumbing requirements shall be in accordance with Section 22 00 00 PLUMBING, GENERAL PURPOSE.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Components

Install all components and fabricated units plumb, level, and rigid. Make field joints between solid polymer components using solid polymer manufacturer's approved seam adhesives, to provide a monolithic appearance with joints inconspicuous in the finished work. Attach metal or vitreous china sinks and lavatory bowls to counter tops using solid polymer manufacturer's recommended clear silicone sealant and mounting hardware. Solid polymer sinks and bowls shall be installed using a color-matched seam adhesive. Plumbing connections to sinks and lavatories shall be made in accordance with Section 22 00 00 PLUMBING, GENERAL PURPOSE.

3.1.1.1 Loose Counter Top Splashes

Mount loose splashes in the locations noted on the drawings. Loose splashes shall be adhered to the counter top with a color matched silicone sealant when the solid polymer components are solid colors. Use a clear silicone sealant to provide adhesion of particulate patterned solid polymer splashes to counter tops.

3.1.2 Silicone Sealant

Use a clear, silicone sealant or caulk to seal all expansion joints between solid polymer components and all joints between solid polymer components and other adjacent surfaces such as walls, floors, ceiling, and plumbing fixtures. Sealant bead shall be smooth and uniform in appearance and shall be the minimum size necessary to bridge any gaps between the solid surfacing material and the adjacent surface. Bead shall be continuous and run the entire length of the joint being sealed.

3.1.3 Plumbing

Make plumbing connections to sinks and lavatories in accordance with Section 22 00 00 PLUMBING, GENERAL PURPOSE.

3.2 CLEAN-UP

Components shall be cleaned after installation and covered to protect against damage during completion of the remaining project items. Components damaged after installation by other trades will be repaired or replaced at the General Contractor's cost. Component supplier will provide a repair/replace cost estimate to the General Contractor who shall approve estimate before repairs are made. Submit a minimum of six copies of maintenance data indicating manufacturer's care, repair and cleaning instructions. Maintenance kit for matte finishes shall be submitted.

-- End of Section --
SECTION 07 41 63

FABRICATED ROOF PANEL ASSEMBLIES

05/09

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ALUMINUM ASSOCIATION (AA)

AMERICAN IRON AND STEEL INSTITUTE (AISI)

AISI SG03-3 (2002) Cold-Formed Steel Design Manual Set

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)

ASTM INTERNATIONAL (ASTM)

ASTM A 653/A 653M (2009a) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM C 273/C 273M (2007a) Shear Properties of Sandwich Core Materials

<table>
<thead>
<tr>
<th>Standard Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D 1621</td>
<td>(2004a) Compressive Properties of Rigid Cellular Plastics</td>
</tr>
<tr>
<td>ASTM D 2244</td>
<td>(2009a) Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates</td>
</tr>
<tr>
<td>ASTM D 2856</td>
<td>(1994; R 1998) Open-Cell Content of Rigid Cellular Plastics by the Air Pycnometer</td>
</tr>
<tr>
<td>ASTM D 3363</td>
<td>(2005) Film Hardness by Pencil Test</td>
</tr>
<tr>
<td>ASTM D 522</td>
<td>(1993a; R 2008) Mandrel Bend Test of Attached Organic Coatings</td>
</tr>
<tr>
<td>ASTM D 714</td>
<td>(2002; R 2009) Evaluating Degree of Blistering of Paints</td>
</tr>
<tr>
<td>ASTM D 822</td>
<td>(2001; R 2006) Filtered Open-Flame Carbon-Arc Exposures of Paint and Related Coatings</td>
</tr>
<tr>
<td>ASTM E 1592</td>
<td>(2005) Structural Performance of Sheet Metal Roof and Siding Systems by Uniform Static Air Pressure Difference</td>
</tr>
</tbody>
</table>
Penetration of Metal Roof Panel Systems by Static Water Pressure Head

METAL BUILDING MANUFACTURERS ASSOCIATION (MBMA)

NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM)

NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

THE SOCIETY FOR PROTECTIVE COATINGS (SSPC)

U.S. NAVAL FACILITIES ENGINEERING COMMAND (NAVFAC)

UNDERWRITERS LABORATORIES (UL)

1.2 PERFORMANCE REQUIREMENTS

a. Hydrostatic-Head Resistance: No water penetration when tested according to ASTM E 2140.
b. Wind-Uplift Resistance: Provide roof panel assemblies that comply with the requirements of the roof systems and attachments in accordance with ASTM E 1592 and UL 580. Uplifting force due to wind action governs the design for panels.

Roof systems and attachments are to resist the wind loads as determined by ASCE 7-05 in pounds per square foot.

1.3 DEFINITIONS

Fabricated Roof Panel Assembly: Metal roof and liner panels, attachment system components, miscellaneous metal framing, thermal insulation, and accessories shop fabricated or field assembled for a complete weather-tight roofing system.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Roofing Panels; G

Flashing and Accessories; G

SD-03 Product Data

Submit Manufacturer's catalog data for the following items:

Factory Color Finish; G

Closure Materials; G

Insulation; G

Pressure Sensitive Tape; G

Sealants and Caulking; G

Aluminized Steel Repair Paint; G

Accessories; G

SD-04 Samples

Submit as required each of the following samples:

Manufacturer's color charts and chips; G

SD-05 Design Data

As applicable submit the following:

Wind design analysis; G

SD-06 Test Reports
Submit test reports; G for the following in accordance with the requirements in this section.

Leakage Tests; G

Wind Uplift Test Report; G

SD-08 Manufacturer's Instructions

Installation of Roof panel assemblies; G

SD-11 Closeout Submittals

Warranty; G

Information Form and Placard; G

Manufacturer's field inspection reports; G

Instructions; G

1.5 QUALITY ASSURANCE

1.5.1 Pre-roofing Conference

After submittals are received and approved but before roofing and insulation work, including associated work, is performed, the Contracting Officer will hold a pre-roofing conference to review the following:

a. The drawings and specifications:

Fabrication and Installation drawings for the following items are to indicate completely dimensioned structural frame and erection layouts, openings in roof, special framing details and construction details at corners, ridges, eaves, building intersections, curbs and flashing, location and type of mastic and metal filler strips, location and erection of flashing:

Installation of Roof panel assemblies

Roofing Panels

Flashing and Accessories

Submit certification from coil stock manufacturer or supplier that the machinery used will form the provided coil stock without warping, waviness, or rippling that is not a part of the panel profile, and without damage, abrasion or marring of the finish coating.

Submit manufacturer's color charts and chips, approximately 4 by 4 inches, showing full range of colors, textures and patterns available for roof panels with Factory Color Finish.

Submit Factory Finish and Color Performance Requirements verified by an independent testing agency.
Submit a wind design analysis from the manufacturer including, but not limited to, wind speed, exposure category, co-efficient, importance factor, designate type of facility, negative pressures for each zone, methods and requirements of attachment. Include a roof plan delineating dimensions and attachment patterns for each zone. Prepare signed and sealed wind design analysis with a Licensed Project Engineer, in the geographic area where the construction will take place.

Wind Uplift Test Report

c. Submit procedure for on site inspection and acceptance of the roofing substrate and pertinent structural details relating to the roofing system, including; but not limited to:

Closure Materials

Insulation

Pressure Sensitive Tape

Sealants and Caulking

Aluminized Steel Repair Paint

Accessories

d. Submit plan for coordination of the work of the various trades involved in providing the roofing system and other components secured to the roofing.

Include detailed application instructions and standard manufacturer drawings altered as required by these specifications. Explicitly identify in writing, differences between manufacturer's instructions and the specified requirements.

e. Safety requirements

1.5.2 Qualification of Installation Contractor

Confirm that the installation contractor is approved and certified by the roofing panel manufacturer prior to beginning the installation of the metal roofing system.

1.5.3 Single Source

Obtain each type of metal roof and liner panels, clips, closures and other accessories from the standard products of the single source from a single manufacturer to operate as a complete system for the intended use.

1.5.4 Surface-Burning Characteristics

Provide metal roof panels having insulation core material with the following surface-burning characteristics as determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

Flame-Spread Index: 25 or less.
Smoke-Developed Index: 450 or less.

1.5.5 Fabrication

Fabricate and finish metal roof panels and accessories at the factory to greatest extent possible, by manufacturer's standard procedures and processes and as necessary to fulfill indicated performance requirements. Comply with indicated profiles, dimensional and structural requirements conforming to AISI SG03-3.

Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel.

Fabricate metal roof panel side laps with factory-installed captive gaskets or separator strips that provide a tight seal and prevent metal-to-metal contact, in a manner that will seal weather-tight and minimize noise from movements within panel assembly.

Sheet Metal Accessories: Fabricate flashing and trim to comply with recommendations in SMACNA 1793 that apply to the design, dimensions, metal, and other characteristics of item indicated.

Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.

End Seams: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with epoxy seam sealer. Rivet joints for additional strength.

Sealed Joints: Form non-expansion but movable joints in metal to accommodate elastomeric sealant to comply with SMACNA 1793.

Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.

Fabricate cleats and attachment devices of size and metal thickness recommended by SMACNA 1793 or by metal roof panel manufacturer for application, but not less than thickness of metal being secured.

1.5.6 Finishes

Comply with NAAMM AMP 500 for recommendations for applying and designating finishes.

Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

1.6 DELIVERY, HANDLING, AND STORAGE

Deliver components, sheets, metal roof panels, and other manufactured items to prevent damage or deformation; package metal roof panels for protection during transportation and handling.

Unload, store, and erect metal roof panels in a manner to prevent bending, warping, twisting, and surface damage.

Stack metal roof panels on platforms or pallets, covered with suitable
weather-tight and ventilated covering; store metal roof panels to ensure dryness. Do not store metal roof panels in contact with other materials that might cause staining, denting, or other surface damage.

Protect strippable protective covering on metal roof panels from exposure to sunlight and high humidity, except to extent necessary for period of metal roof panel installation.

Protect foam-plastic insulation as follows:

a. Do not expose to sunlight, except to extent necessary for period of installation and concealment.

b. Protect against ignition at all times. Do not deliver foam-plastic insulation materials to Project site before installation time.

Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

1.7 PROJECT CONDITIONS

Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit metal roof panel work to be performed according to manufacturer's written instructions and warranty requirements.

Field Measurements: Verify actual dimensions of construction contiguous with metal roof panels by field measurements before fabrication.

1.8 WARRANTY

Furnish the metal roof panel manufacturer's 20-year roof system materials and installation workmanship warranty, including flashing, insulation, components, trim, and accessories necessary for a watertight roof system construction. Make warranty directly to the Government, commencing at time of Government's acceptance of the roof work. Provide a warranty with the following conditions:

a. If within the warranty period, the metal roof system, as installed for its intended use in the normal climatic and environmental conditions of the facility, becomes non-watertight, shows evidence of moisture intrusion within the assembly, displaces, corrodes, perforates, separates at the seams, or shows evidence of excessive weathering due to defective materials or installation workmanship, the repair or replacement of the defective and damaged materials of the metal roof system and correction of defective workmanship is the responsibility of the metal roof panel manufacturer. All costs associated with the repair or replacement work are the responsibility of the metal roof panel manufacturer. Conform galvanized repairs to ASTM A 780/A 780M.

b. If the manufacturer or his approved applicator fail to perform the repairs within 72 hours of notification, emergency temporary repairs performed by others does not void the warranty.

1.8.1 Manufacturer's Finish Warranty

Provide a manufacturer's 20 year "No-Dollar-Limit" warranty for labor and materials for the roofing system. Issue the warranty directly to the Government at the date of Government acceptance, warranting that the factory color finish, under normal atmospheric conditions at the site, will not
crack, peel, or delaminate; chalk in excess of a numerical rating of 8 when measured in accordance with ASTM D 4214; or fade or change colors in excess of 5 NBS units as measured in accordance with ASTM D 2244.

1.8.2 Continuance of Warranty

Approve and accomplish required repair or replacement work that becomes necessary within the warranty period in a manner so as to restore the integrity of the roof system assembly and maintain the validity of the metal roof system manufacturer warranty for the remainder of the manufacturer warranty period.

1.9 CONFORMANCE AND COMPATIBILITY

Provide an entire roofing and flashing system in accordance with specified and indicated requirements, including wind resistance requirements. Perform any work not specifically addressed, or any deviation from specified requirements in general accordance with recommendations of the MBMA RSDM, NRCA 0405, the metal panel manufacturer's published recommendations and details, and compatible with surrounding components and construction. Submit any deviation from specified or indicated requirements to the Contracting Officer for approval prior to installation.

1.10 SCHEDULE

Some metric measurements in this section are based on mathematical conversion of English unit measurements, and not on metric measurement commonly agreed to by the manufacturers or other parties. The English and metric units for the measurements shown are as follows:

<table>
<thead>
<tr>
<th>PRODUCTS</th>
<th>ENGLISH UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Sheet Aluminum</td>
<td>0.040 inch</td>
</tr>
<tr>
<td>b. Panels</td>
<td>12 inches</td>
</tr>
<tr>
<td>- vertical legs</td>
<td>2 inches</td>
</tr>
<tr>
<td>- stiffening ribs</td>
<td>4 inches</td>
</tr>
<tr>
<td>c. Screws</td>
<td>No. 14</td>
</tr>
<tr>
<td></td>
<td>No. 12</td>
</tr>
<tr>
<td>d. Bolts</td>
<td>1/4 inch</td>
</tr>
<tr>
<td>e. Studs</td>
<td>3/16 inch</td>
</tr>
<tr>
<td>f. Fasteners</td>
<td>1/2 inch</td>
</tr>
<tr>
<td></td>
<td>One inch</td>
</tr>
<tr>
<td>g. Rivets</td>
<td>1/16 inch</td>
</tr>
<tr>
<td></td>
<td>1/8 inch</td>
</tr>
</tbody>
</table>

PART 2 PRODUCTS

2.1 PANEL MATERIALS

2.1.1 Aluminum Sheet

Roll-form aluminum roof and liner panels to the specified profile, with fy equals 40 ksi, .040 inch thickness and depth as indicated. Ensure the
material is plumb and true, and within the tolerances listed:

b. Individual panels to have continuous length to cover the entire length of any unbroken roof slope with no joints or seams and formed without warping, waviness, or ripples that are not part of the panel profile and free of damage to the finish coating system.

c. Provide panels with thermal expansion and contraction consistent with the type of system specified.

 (1) Provide profile to match existing.

2.1.2 Foam-Insulation Core Roof Panel

Provide factory-formed aluminum roof panel assembly fabricated from two sheets of metal with modified polyisocyanurate or polyurethane foam insulation core board during fabrication with joints between panels designed to form weather-tight seals. Include accessories required for weather-tight installation.

a. Closed-Cell Content: 90 percent when tested according to ASTM D 2856.

b. Density: 2.0 to 2.6 lb/cu. ft. when tested according to ASTM D 1622.

c. Compressive Strength: Minimum 20 psi when tested according to ASTM D 1621.

d. Shear Strength: 26 psi when tested according to ASTM C 273/C 273M.

2.1.3 Finish

All panels are to receive a factory-applied Kynar 500/Hylar 5000 finish consisting of a baked-on top-coat with a manufacturer’s recommended prime coat conforming to the following:

a. Metal Preparation: All metal is to have the surfaces carefully prepared for painting on a continuous process coil coating line by alkali cleaning, hot water rinsing, application of chemical conversion coating, cold water rinsing, sealing with acid rinse, and thorough drying.

b. Prime Coating: Apply a base coat of epoxy paint, specifically formulated to interact with the top-coat, to the prepared surfaces by roll coating to a dry film thickness of 0.20 plus 0.05 mils. Ensure the prime coat is oven cured prior to application of finish coat.

c. Exterior Finish Coating: Apply the finish coating over the primer by roll coating to dry film thickness of 0.80 plus 5 mils (3.80 plus 0.50 mils for Vinyl Plastisol) for a total dry film thickness of 1.00 plus 0.10 mils (4.00 plus 0.10 mils for Vinyl Plastisol). Ensure the finish coat is oven-cured.

d. Interior Finish Coating: Apply a wash-coat on the reverse side over the primer by roll coating to a dry film thickness of 0.30 plus 0.05 mils for a total dry film thickness of 0.50 plus 0.10 mils. Ensure the wash-coat is oven-cured.
e. Color: The exterior finish chosen from the manufacturer's standard color chart to match existing.

f. Physical Properties: Provide coating conforming to the industry and manufacturer's standard performance criteria as listed by the following certified test reports:

 Chalking: ASTM D 333
 Coating Thickness: ASTM B 659
 Color Change and Conformity: ASTM D 2244
 Weatherometer: ASTM G 152, ASTM G 153 and ASTM D 822
 Humidity: ASTM D 2247 and ASTM D 714
 Salt Spray: ASTM B 117
 Chemical Pollution: ASTM D 1308
 Gloss at 60: ASTM D 523
 Pencil Hardness: ASTM D 3363
 Reverse Impact: ASTM D 2794
 Flexibility: ASTM D 522
 Abrasion: ASTM D 968
 Flame Spread: ASTM E 84

2.2 MISCELLANEOUS METAL FRAMING

2.2.1 General

 Cold-formed metallic-coated steel sheet conforming to AISI SG03-3 and ASTM A 653/A 653M and specified in Section 05 40 00 COLD-FORMED METAL FRAMING unless otherwise indicated.

2.2.2 Fasteners for Miscellaneous Metal Framing

 Type, material, corrosion resistance, size and sufficient length to penetrate the supporting member a minimum of 1 inch with other properties required to fasten miscellaneous metal framing members to substrates in accordance with the roof panel manufacturer's and ASCE 7-05 requirements.

2.3 FASTENERS

2.3.1 General

 Type, material, corrosion resistance, size and sufficient length to penetrate the supporting member a minimum of 1 inch with other properties required to fasten miscellaneous metal framing members to substrates in accordance with the roof panel manufacturer's and ASCE 7-05 requirements.
2.3.2 Exposed Fasteners

Provide corrosion resistant coated steel, aluminum, stainless steel, or nylon capped, steel compatible, exposed fasteners with the sheet panel or flashing and of a type and size recommended by the manufacturer to meet the performance requirements and design loads. Provide manufacturer's standard fasteners for accessories. Provide an integral metal washer matching the color of attached material with compressible sealing EPDM gasket approximately 3/32 inch thick.

2.3.3 Screws

Provide corrosion resistant coated steel, aluminum and/or stainless steel screws of the type and size recommended by the manufacturer to meet the performance requirements.

2.3.4 Rivets

Provide closed-end type rivets, made of corrosion resistant coated steel, aluminum or stainless steel where watertight connections are required.

2.3.5 Attachment Clips

Fabricate clips from steel hot-dipped galvanized in accordance with ASTM A 653/A 653M Z275 G 90 or Series 300 stainless steel. Size, shape, thickness and capacity as required meeting the insulation thickness and design load criteria specified.

2.4 ACCESSORIES

2.4.1 General

Provide only accessories which are compatible with the metal roof panels. Sheet metal flashing, trim, metal closure strips, caps and similar metal accessories can not be less than the minimum thickness specified for the roof panels. Exposed metal accessories/finishes to match the panels furnished, except as otherwise indicated. Provide molded foam rib, ridge and other closure strips which are non-absorbent closed-cell or solid-cell synthetic rubber or pre-molded neoprene to match configuration of the panels.

2.4.2 Rubber Closure Strips

Closed-cell, expanded cellular rubber conforming to ASTM D 1056 and ASTM D 1667; extruded or molded to the configuration of the specified roof panel and in lengths supplied by the roof panel manufacturer.

2.4.3 Metal Closure Strips

Factory fabricated aluminum closure strips to be the same gauge, color, finish and profile of the specified roof panel.

2.4.4 Joint Sealants

2.4.4.1 Sealants

Provide an approved gun type sealant for use in hand- or air-pressure caulking guns at temperatures above 40 degrees F (or frost-free application at temperatures above 10 degrees F with minimum solid content of 85 percent...
of the total volume. Provide sealant that has a tough, durable dry surface skin which permits it to remain soft and pliable underneath, providing a weather-tight joint. No migratory staining is permitted on painted or unpainted metal, stone, glass, vinyl, or wood.

Prime all joints to receive sealants with a compatible one-component or two-component primer as recommended by the roof panel manufacturer.

a. Shop Applied Caulking: An approved gun grade, non-sag one component polysulfide or silicone conforming to ASTM C 920, Type II, with a curing time to ensure the sealant's plasticity at the time of field erection.

b. Field Applied Caulking: An approved gun grade, non-sag one component polysulfide or two-component polyurethane with an initial maximum Shore A durometer hardness of 25, conforming to ASTM C 920, Type II. Match color to panel colors.

c. Tape Sealant: Pressure sensitive, 100% solid with a release paper backing; permanently elastic, non-sagging, non-toxic and non-staining as approved by the roof panel manufacturer.

2.5 SHEET METAL FLASHING AND TRIM

2.5.1 Fabrication, General

Custom fabricate sheet metal flashing and trim to comply with recommendations in SMACNA 1793 that apply to the design, dimensions, metal and other characteristics of the items indicated. Shop fabricated items where practicable. Obtain field measurements for accurate fit before shop fabrication.

2.6 REPAIR OF FINISH PROTECTION

Provide repair paint for color finish enameled roofing that is compatible with the paint of the same formula and color as the specified finish furnished by the roofing manufacturer. Conform acrylic or modified acrylic to NAVFAC A-A-50570.

PART 3 EXECUTION

3.1 EXAMINATION

Contracting Officer may request verification and certification testing of coatings and base metals of metal roofing prior to installation.

a. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal roof panel supports, and other conditions affecting performance of the work.

b. Examine primary and secondary roof framing to verify that rafters, purlins, angles, channels, and other structural panel support members and anchorages have been installed within alignment tolerances required by metal roof panel manufacturer, UL, ASTM, ASCE 7-05 and as required for the geographical area where construction will take place.

c. Examine solid roof sheathing to verify that sheathing joints are supported by framing or blocking and that installation is within flatness tolerances required by metal roof panel manufacturer.
d. Examine roughing-in for components and systems penetrating metal roof panels to verify actual locations of penetrations relative to seam locations of metal roof panels before metal roof panel installation.

e. Submit to the Contracting Officer a written report, endorsed by Installer, listing conditions detrimental to performance of the work.

f. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

a. Clean substrates of substances harmful to insulation, including removing projections capable of interfering with insulation attachment.

b. Miscellaneous Framing: Install sub-purlins, eave angles, furring, and other miscellaneous roof panel support members and anchorage according to metal roof panel manufacturer's written instructions.

3.3 ROOF PANEL INSTALLATION

Provide metal roof panels of full length as indicated, unless otherwise indicated or restricted by shipping limitations. Anchor metal roof panels and other components of the Work securely in place, with provisions for thermal and structural movement in accordance with NRCA ASMMRM.

Aluminum Roof Panels: Use aluminum or stainless-steel fasteners for exterior surfaces and aluminum or galvanized steel fasteners for interior surfaces.

Anchor Clips: Anchor metal roof panels and other components of the work securely in place, using manufacturer's approved fasteners according to manufacturers' written instructions.

Metal Protection: Where dissimilar metals will contact each other or corrosive substrates, protect against galvanic action by painting contact surfaces with bituminous coating conforming to SSPC Paint 12, by applying rubberized-asphalt underlayment to each contact surface, or by other permanent separation as recommended by metal roof panel manufacturer.

Joint Sealers: Install gaskets, joint fillers, and sealants where indicated and where required for weatherproof performance of metal roof panel assemblies. Provide types of gaskets, fillers, and sealants indicated or, if not indicated, types recommended by metal roof panel manufacturer.

Erect roofing system in accordance with the approved erection drawings, the printed instructions and safety precautions of the manufacturer.

Do not subject sheets to overloading, abuse, or undue impact. Do not apply bent, chipped, or defective sheets.

Erect sheets true and plumb and in exact alignment with the horizontal and vertical edges of the building, securely anchored, and with the indicated rake, eave, and curb overhang.

Allow for thermal movement of the roofing, movement of the building
structure, and provide permanent freedom from noise due to wind pressure.

Field cutting metal roof panels by torch is not permitted.

Lay roofing sheets with corrugations in the direction of the roof slope. End laps of exterior roofing can not be less than 8 inches; the side laps of standard exterior corrugated sheets can not be not less than 2-1/2 corrugations.

Do not permit storage, walking, wheeling, and trucking directly on applied roofing materials. Provide temporary walkways, runways, and platforms of smooth clean boards or planks as necessary to avoid damage to the installed roofing materials, and to distribute weight to conform to the indicated live load limits of roof construction.

3.4 FASTENER INSTALLATION

Anchor metal roof panels and other components of the Work securely in place, using manufacturer's approved fasteners according to manufacturers' written instructions.

3.5 FLASHING, TRIM AND CLOSURE INSTALLATION

3.5.1 General Requirements

Comply with performance requirements, manufacturer's written installation instructions, and SMACNA 1793. Provide concealed fasteners where possible, and set units true to line and level as indicated. Install work with laps, joints, and seams that will be permanently watertight and weather resistant.

Install sheet metalwork to form weather-tight construction without waves, warps, buckles, fastening stresses or distortion, and allow for expansion and contraction. Perform cutting, fitting, drilling, and other operations in connection with sheet metal required to accommodate the work of other trades by sheet metal mechanics.

3.5.2 Metal Flashing

Install metal flashing at building corners, rakes and eaves, junctions between metal siding and roofing, valleys and changes of slope or direction in metal roofing, and building expansion joints and gutters.

Provide exposed metal flashing that is the same material, color, and finish as the specified metal roofing.

Fasten flashing at not more than 8 inches on center for roofs, except where flashing are held in place by the same screws that secure covering sheets.

Furnish flashing in at least 8-foot lengths. Provide exposed flashing that has one inch locked and blind-soldered end joints, and expansion joints at intervals of not more than 16 feet.

Bed exposed flashing and flashing subject to rain penetration in the specified joint sealant.

Isolate flashing which is in contact with dissimilar metals by means of the specified asphalt mastic material to prevent electrolytic deterioration.

Form drips to the profile indicated, with the edge folded back 1/2 inch to
form a reinforced drip edge to match existing.

3.5.3 Closures

Install metal closure strips at open ends of metal ridge rolls; open ends of corrugated or ribbed pattern roofs, and at intersection of wall and roof unless open ends are concealed with formed eave flashing; rake of metal roof unless open end has a formed flashing member; and in other required areas.

Install mastic closure strips at intersection of the wall with metal roofing; top and bottom of metal siding; heads of wall openings; and in other required locations.

3.6 WORKMANSHP

Ensure lines, arises, and angles are sharp and true. Free exposed surfaces from visible wave, warp, buckle, and tool marks. Fold back exposed edges neatly to form a 1/2 inch hem on the concealed side. Ensure that sheet metal that is exposed to the weather is watertight with provisions for expansion and contraction.

Ensure surfaces that are to receive sheet metal are plumb and true, clean, even, smooth, dry, and free of defects and projections which might affect the application. For installation of items not shown in detail or not covered by specifications conform to the applicable requirements of SMACNA 1793. Provide sheet metal flashing in the angles formed where roof decks abut walls, curbs, ventilators, pipes, or other vertical surfaces and wherever indicated and necessary to make the work watertight.

3.7 ACCEPTANCE PROVISIONS

3.7.1 Erection Tolerances

Erect metal roofing straight and true with plumb vertical lines correctly lapped and secured in accordance with the manufacturer’s written instructions. Do not vary horizontal lines more than 1/8 inch in 40 feet.

3.7.2 Leakage Tests

Finished application of metal roofing is subject to inspection and test for leakage by the Contracting Officer, Architect/Engineer. Conduct inspections and tests without cost to the Government.

Perform inspections and tests promptly after erection to permit correction of defects and the removal and replacement of defective materials.

3.7.3 Repairs to Finish

Repair scratches, abrasions, and minor surface defects of finish with the specified repair materials. Ensure finished repaired surfaces are uniform and free from variations of color and surface texture.

Immediately remove and replace repaired metal surfaces that are not acceptable to the project requirements with new material.

3.8 CLEAN-UP AND DISPOSAL

Clean all exposed sheet metal work at completion of installation. Remove
metal shavings, filings, nails, bolts, and wires from roofs. Remove grease and oil films, excess sealants, handling marks, contamination from steel wool, fittings and drilling debris and scrub the work clean. Ensure exposed metal surfaces are free of dents, creases, waves, scratch marks, solder or weld marks, and damage to the finish coating.

Collect and place scrap/waste materials in containers. Promptly dispose of demolished materials. Do not allow demolished materials to accumulate on-site; transport demolished materials from government property and legally dispose of them.

3.9 INFORMATION FORM AND PLACARD

For each roof, furnish a typewritten information card for facility records and a card laminated in plastic and framed for interior display at roof access point, or a photoengraved 0.032 inch thick aluminum card for exterior display. Format as directed in paragraph titled "Form One".

Provide an information card 8 1/2 by 11 inches minimum, identifying the facility name and number; location; contract number; approximate roof area; detailed roof system description, including deck type, roof panel manufacturer and product name, type underlayment(s), date of completion; installing contractor identification and contact information; manufacturer warranty expiration, warranty reference number, and contact information. Install card at location as directed by the Contracting Officer and provide a paper copy to the Contracting Officer.

3.10 FORM ONE
FORM 1 - PREFORMED ALUMINUM PANEL ROOFING SYSTEM AND COMPONENTS

1. Contract Number:

2. Building Number & Location:

3. NAVFAC Specification Number:

4. Deck/Substrate Type:

5. Slopes of Deck/Roof Structure:

6. Insulation Type & Thickness:

7. Insulation Manufacturer:

8. Vapor Retarder: ()Yes ()No

9. Vapor Retarder Type:

10. Preformed Steel Standing Seam Roofing Description:
 a. Manufacturer (Name, Address, & Phone No.):
 b. Product Name:
 c. Width:
 d. Gage:
 e. Base Metal:
 f. Method of Attachment:

11. Repair of Color Coating:
 a. Coating Manufacturer (Name, Address & Phone No.):
 b. Product Name:
 c. Surface Preparation:
 d. Recoating Formula:
 e. Application Method:

12. Statement of Compliance or Exception:_________________________________

13. Date Roof Completed:

14. Warranty Period: From_______________ To_______________

15. Roofing Contractor (Name & Address):

16. Prime Contractor (Name & Address):

Contractor's Signature _________________________ Date:

Inspector's Signature _________________________ Date:

-- End of Section --
SECTION 07 42 13

METAL WALL PANELS
01/08

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ALUMINUM ASSOCIATION (AA)

AA ASD1 (2009) Aluminum Standards and Data

AMERICAN ARCHITECTURAL MANUFACTURERS ASSOCIATION (AAMA)

AAMA 501.1 (2005) Methods of Test for Exterior Walls

AMERICAN IRON AND STEEL INSTITUTE (AISI)

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)

ASTM INTERNATIONAL (ASTM)

ASTM A 1008/A 1008M (2009a) Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardened

ASTM A 653/A 653M (2009a) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM D 1654 (2008) Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments

ASTM D 2244 (2009a) Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates

ASTM D 3359 (2009) Measuring Adhesion by Tape Test

ASTM D 3363 (2005) Film Hardness by Pencil Test

ASTM D 522 (1993a; R 2008) Mandrel Bend Test of Attached Organic Coatings

ASTM D 610 (2008) Evaluating Degree of Rusting on Painted Steel Surfaces

ASTM D 714 (2002; R 2009) Evaluating Degree of
Blistering of Paints

ASTM D 822
(2001; R 2006) Filtered Open-Flame Carbon-Arc Exposures of Paint and Related Coatings

ASTM D 968
(2005e1) Abrasion Resistance of Organic Coatings by Falling Abrasive

ASTM E 283
(2004) Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

ASTM E 331
(2000; R 2009) Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference

ASTM E 84

ASTM G 23

METAL BUILDING MANUFACTURERS ASSOCIATION (MBMA)

MBMA MBSM

NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM)

NAAMM AMP 500

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

SMACNA 1793

THE SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC Paint 12
(1982; E 2000) Paint Specification No. 12 Cold-Applied Asphalt Mastic (Extra Thick Film)

U.S. NAVAL FACILITIES ENGINEERING COMMAND (NAVFAC)

NAVFAC A-A-50570
(1997) Paint, Water-Borne, Acrylic Or Modified Acrylic, Semigloss, For Metal Surfaces

1.2 DEFINITIONS

Metal Wall Panel: Metal wall panels, attachment system components and accessories necessary for a complete weather-tight wall system.
1.3 DESCRIPTION OF WALL PANEL SYSTEM

Factory color finished, metal wall panel system with concealed fastening attachment. Panel profile must be flush face to match existing.

1.3.1 Metal Wall Panel General Performance

Comply with performance requirements, conforming to AISI/COS/NASPEC, without failure due to defective manufacture, fabrication, installation, or other defects in construction. Wall panels and accessory components must conform to the following standards:

- ASTM A 1008/A 1008M
- ASTM A 123/A 123M
- ASTM A 36/A 36M

1.3.2 Air Infiltration

Air leakage must conform to the limits through the wall assembly area when tested according to ASTM E 283.

1.3.3 Water Penetration Under Static Pressure

No water penetration when tested according to ASTM E 331.

1.3.4 Water Penetration Under Dynamic Pressure

No evidence of water leakage when tested according to AAMA 501.1.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Installation Drawings; G

SD-03 Product Data

Submit Manufacturer's data indicating percentage of recycle material in wall panels to verify sustainable acquisition; G compliance.

Submit Manufacturer's catalog data for the following items:

- Factory Color Finish
- Closure Materials
- Pressure Sensitive Tape
- Sealants and Caulking
- Aluminized Steel Repair Paint
- Accessories

SD-06 Test Reports

Submit test reports for the following in accordance with the
1.5 QUALITY ASSURANCE

1.5.1 Pre-Installation Conference

Upon notification of submittal receipt and approval by the Contracting Officer; and prior to the commencement of the work, the Contractor must attend a pre-installation conference to review the following:

a. Drawings and Specifications.

b. Color charts and chips

c. Construction schedule, availability of materials, Installer's personnel, equipment and facilities required to progress with the work without delay.

d. Methods and procedures related to installation of wall panels, including manufacturer's written instructions. Explicitly identify in writing, differences between manufacturer's instructions and the specified requirements.

e. Support conditions for compliance with requirements, including alignment between and attachment to structural members.

f. Flashing, special siding details, wall penetrations, openings, and condition of other construction that will affect metal wall panels.

g. Governing regulations and requirements for insurance, certificates, and tests and inspections if applicable.

h. Temporary protection requirements for metal wall panel assembly during and after installation.

i. Wall panel observation and repair procedures after metal wall panel installation. Provide detailed written instructions including copies of Material Safety Data Sheets for maintenance and repair materials, and manufacturer's maintenance instructions.

1.5.1.1 Installation Drawings

Installation shop drawings for wall panels, flashing, accessories, and anchorage systems must indicate completely dimensioned structural frame and
erection layouts, openings in the wall, special framing details, and construction details at corners, building intersections and flashing, location and type of mastic and metal filler strips.

1.5.1.2 Wind Load Design Analysis

Wind design analysis must include wall plan delineating dimensions and attachment patterns for each zone. Wind design analysis must be prepared and sealed by Licensed Project Engineer in the geographic area where the construction will take place.

1.5.2 Single Source

Obtain each type of metal wall panels, clips, closure materials and other accessories from the standard products of the single source from a single manufacturer to operate as a complete system for the intended use.

1.6 DELIVERY, HANDLING, AND STORAGE

Deliver and protect package components, sheets, metal wall panels, and other manufactured items to prevent damage or deformation during transportation and handling.

Unload, store, and erect metal wall panels in a manner to prevent bending, warping, twisting, and surface damage.

Stack and store metal wall panels horizontally on platforms or pallets, covered with suitable weather-tight and ventilated covering to ensure dryness, with positive slope for drainage of water. Do not store metal wall panels in contact with other materials that might cause staining, denting, or other surface damage.

Retain strippable protective covering on metal wall panel until actual installation.

1.7 PROJECT CONDITIONS

1.7.1 Field Measurements

Verify locations of wall framing and opening dimensions by field measurements before metal wall panel fabrication and indicate measurements on Shop Drawings.

1.7.2 Weather Limitations

Proceed with installation preparation only when existing and forecasted weather conditions permit Work to proceed without water entering into wall system or building.

1.8 WARRANTY

Warranty must conform to the Sample Warranty as reviewed and approved by the Contracting Officer at the Pre-Installation Conference.

PART 2 PRODUCTS

2.1 FABRICATION

Fabricate and finish metal wall panels and accessories at the factory to
greatest extent possible, by manufacturer's standard procedures and processes and as necessary to fulfill indicated performance requirements. Comply with indicated profiles and with dimensional and structural requirements.

Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel. Fabricate metal wall panel side laps with factory-installed captive gaskets or separator strips that provide a tight seal and prevent metal-to-metal contact, in a manner that will seal weather-tight and minimize noise from movements within panel assembly.

2.1.1 Sheet Metal Accessories

Fabricate flashing and trim to comply with recommendations in SMACNA 1793 that apply to the design, dimensions, metal, and other characteristics of item indicated:

a. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.

b. End Seams: fabricate nonmoving end seams with flat-lock seams. Form seams and seal with epoxy seam sealer. Rivet joints for additional strength.

c. Sealed Joints: form non-expansion but movable joints in metal to accommodate elastomeric sealant to comply with SMACNA 1793.

d. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.

e. Fabricate cleats and attachment devices of size and metal thickness recommended by SMACNA 1793 or by metal wall panel manufacturer for application, but not less than thickness of metal being secured.

2.2 PANEL MATERIALS

2.2.1 Aluminum Sheet

Roll-form aluminum wall panels to the specified profile, with fy = 40 ksi, .040" thickness and depth as indicated. Material must be plumb and true, and within the tolerances listed:

a. Aluminum Sheet conforming to ASTM B 209, AA ASD1 and AA ADM1.

b. Individual panels must be have continuous length to cover the entire length of any wall area with no joints or seams and formed without warping, waviness, or ripples that are not part of the panel profile and free of damage to the finish coating system.

c. Provide panels with thermal expansion and contraction consistent with the type of system specified.

 i. Profile and coverage to be a minimum height and width from manufacturer's standard for the indicated wall area.

 ii. Embossed surface texture.
2.2.2 **Factory Color Finish**

Comply with [NAAMM AMP 500](#) for recommendations for applying and designating finishes. Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved samples and are assembled or installed to minimize contrast.

All panels are to receive a factory-applied Kynar 500/Hylar 5000 finish consisting of a baked-on top-coat with a manufacturer's recommended prime coat conforming to the following:

2.2.2.1 **Metal Preparation**

Carefully prepare all metal surface for painting on a continuous process coil coating line by alkali cleaning, hot water rinsing, application of chemical conversion coating, cold water rinsing, sealing with acid rinse, and thorough drying.

2.2.2.2 **Prime Coating**

Apply a base coat of epoxy paint, specifically formulated to interact with the top-coat, to the prepared surfaces by roll coating to a dry film thickness of 0.20 + 0.05 mils. Prime coat must be oven cured prior to application of finish coat.

2.2.2.3 **Exterior Finish Coating**

Roll coat the finish coating over the primer by roll coating to dry film thickness of 0.80 + 5 mils (3.80 + 0.50 mils for Vinyl Plastisol) for a total dry film thickness of 1.00 + 0.10 mils (4.00 + 0.10 mils for Vinyl Plastisol). Oven-cure finish coat.

2.2.2.4 **Interior Finish Coating**

Apply a wash-coat on the reverse side over the primer by roll coating to a dry film thickness of 0.30 + 0.05 mils for a total dry film thickness of 0.50 + 0.10 mils. Oven-cured the wash coat.

2.2.2.5 **Color**

Provide exterior finish color to match existing.

2.2.2.6 **Physical Properties**

Coating must conform to the industry and manufacturer's standard performance criteria as listed by the following certified test reports:

- **General:** SSPC Paint 12, NAVFAC A-A-50570, ASTM D 5894, and ASTM D 4587.
- **Abrasion:** ASTM D 968
- **Adhesion:** ASTM D 3359
- **Chalking:** ASTM D 4214
- **Chemical Pollution:** ASTM D 1308
- **Color Change and Conformity:** ASTM D 2244
- **Creepage:** ASTM D 1654
- **Cyclic Corrosion Test:** ASTM D 5894
- **Flame Spread:** ASTM E 84
- **Flexibility:** ASTM D 522
2.3 MISCELLANEOUS METAL FRAMING

Cold-formed metallic-coated steel sheet conforming to ASTM A 653/A 653M and specified in Section 05 40 00 COLD-FORMED METAL FRAMING unless otherwise indicated.

2.3.1 Fasteners for Miscellaneous Metal Framing

Type, material, corrosion resistance, size and sufficient length to penetrate the supporting member a minimum of 1 inch with other properties required to fasten miscellaneous metal framing members to supporting members and substrates in accordance with the wall panel manufacturer's and ASCE 7-05 requirements.

2.4 FASTENERS

2.4.1 General

2.4.1.1 Hidden Fasteners

Provide corrosion resistant fasteners recommended by the manufacturer to meet the performance requirements and design loads.

2.4.1.2 Screws

Screws to be corrosion resistant coated steel, aluminum and/or 300 - series stainless steel being the type and size recommended by the manufacturer to meet the performance requirements.

2.4.1.3 Rivets

Rivets to be closed-end type, corrosion resistant coated steel, aluminum or stainless steel where watertight connections are required.

2.4.1.4 Attachment Clips

Fabricate clips from steel hot-dipped galvanized in accordance with ASTM A 653/A 653M, Z275 G 90 or Series 300 stainless steel. Size, shape, thickness and capacity as required meeting the insulation thickness and design load criteria specified.

2.5 ACCESSORIES

2.5.1 General

All accessories must be compatible with the metal wall panels. Sheet metal flashing, trim, metal closure strips, caps and similar metal accessories must not be less than the minimum thickness specified for the wall panels. Exposed metal accessories/finishes to match the panels furnished, except as otherwise indicated. Molded foam rib, ridge and other closure strips must
be non-absorbent closed-cell or solid-cell synthetic rubber or pre-molded neoprene to match configuration of the panels.

2.5.2 Rubber Closure Strips

Provide closed-cell, expanded cellular rubber conforming to ASTM D 1056 and ASTM D 1667; extruded or molded to the configuration of the specified wall panel and in lengths supplied by the wall panel manufacturer.

2.5.3 Metal Closure Strips

Provide factory fabricated aluminum closure strips to be the same gauge, color, finish and profile of the specified wall panel.

2.5.4 Joint Sealants

2.5.4.1 Sealants and Caulking

Provide approved gun type sealants for use in hand- or air-pressure calking guns at temperatures above 40 degrees F 4 degrees C (or frost-free application at temperatures above 10 degrees F minus 12 degrees C) with minimum solid content of 85 percent of the total volume. Sealants must dry with a tough, durable surface skin which permit remaining soft and pliable underneath, providing a weather-tight joint. No migratory staining is permitted on painted or unpainted metal, stone, glass, vinyl, or wood.

Prime all joints receiving sealants with a compatible one-component or two-component primer as recommended by the wall panel manufacturer.

2.5.4.2 Shop-Applied

Sealant for shop-applied caulking must be an approved gun grade, non-sag one component polysulfide or silicone conforming to ASTM C 920, Type II, and with a curing time to ensure the sealant's plasticity at the time of field erection.

2.5.4.3 Field-Applied

Sealant for field-applied caulking must be an approved gun grade, non-sag one component polysulfide or two-component polyurethane with an initial maximum Shore A durometer hardness of 25, and conforming to ASTM C 920, Type II. Color to match panel colors.

2.5.4.4 Pressure Sensitive Tape

Provide pressure sensitive tape sealant, 100% solid with a release paper backing; permanently elastic, non-sagging, non-toxic and non-staining as approved by the wall panel manufacturer.

2.6 SHEET METAL FLASHING AND TRIM

2.6.1 Fabrication

Shop fabricate sheet metal flashing and trim where practicable to comply with recommendations in SMACNA 1793 that apply to design, dimensions, metal, and other characteristics of item indicated. Obtain field measurements for accurate fit before shop fabrication.

Fabricate sheet metal flashing and trim without excessive oil canning,
buckling, and tool marks and true to line and levels indicated, with exposed edges folded back to form hems.

2.7 REPAIR OF FINISH PROTECTION

Repair paint for color finish enameled wall panel must be compatible paint of the same formula and color as the specified finish furnished by the wall panel manufacturer. Provide 2 pints of repair paint matching the specified wall panels.

PART 3 EXECUTION

3.1 EXAMINATION

Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal wall panel supports, and other conditions affecting performance of the Work.

Examine primary and secondary wall framing to verify that rafters, purlins, angles, channels, and other structural panel support members and anchorages have been installed within alignment tolerances required by metal wall panel manufacturer, UL, ASTM, *ASCE 7-05* and as required for the geographical area where construction will take place.

Examine solid wall sheathing to verify that sheathing joints are supported by framing or blocking and that installation is within flatness tolerances required by metal wall panel manufacturer.

Examine roughing-in for components and systems penetrating metal wall panels to verify actual locations of penetrations relative to seam locations of metal wall panels before metal wall panel installation.

Submit to the Contracting Officer a written report, endorsed by Installer, listing conditions detrimental to performance of the Work. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

Clean substrates of substances harmful to insulation, including removing projections capable of interfering with insulation attachment. Miscellaneous framing installation, including sub-purlins, girts, angles, furring, and other miscellaneous wall panel support members and anchorage must be according to metal wall panel manufacturer’s written instructions.

3.3 WALL PANEL INSTALLATION

Provide full length metal wall panels, as indicated, unless otherwise indicated or restricted by shipping limitations. Anchor metal wall panels and other components of the Work securely in place, with provisions for thermal and structural movement in accordance with *MBMA MBSM*.

Erect wall panel system in accordance with the approved erection drawings, the printed instructions and safety precautions of the manufacturer.

Sheets are not to be subjected to overloading, abuse, or undue impact. Bent, chipped, or defective sheets shall not be applied.

Sheets must be erected true and plumb and in exact alignment with the horizontal and vertical edges of the building, securely anchored, and with
the indicated eave, and sill.

Work is to allow for thermal movement of the wall panel, movement of the building structure, and to provide permanent freedom from noise due to wind pressure.

Field cutting metal wall panels by torch is not permitted.

3.3.1 Aluminum Wall Panels

Use aluminum or stainless-steel fasteners for exterior surfaces and aluminum or galvanized steel fasteners for interior surfaces.

3.3.2 Anchor Clips

Anchor metal wall panels and other components of the Work securely in place, using manufacturer's approved fasteners according to manufacturers' written instructions.

3.3.3 Metal Protection

Where dissimilar metals will contact each other or corrosive substrates, protect against galvanic action by painting contact surfaces with bituminous coating, by applying rubberized-asphalt underlayment to each contact surface, or by other permanent separation as recommended by metal wall panel manufacturer.

3.3.4 Joint Sealers

Install gaskets, joint fillers, and sealants where indicated and where required for weatherproof performance of metal wall panel assemblies. Provide types of gaskets, fillers, and sealants indicated or, if not indicated, types recommended by metal wall panel manufacturer.

3.4 FASTENER INSTALLATION

Anchor metal wall panels and other components of the Work securely in place, using manufacturer's approved fasteners according to manufacturers' written instructions.

3.5 FLASHING, TRIM AND CLOSURE INSTALLATION

3.5.1 General Requirements

Comply with performance requirements, manufacturer's written installation instructions, and SMACNA 1793. Provide concealed fasteners where possible, and set units true to line and level as indicated. Install work with laps, joints, and seams to form permanently watertight and weather resistant.

Install sheet metal work is to form weather-tight construction without waves, warps, buckles, fastening stresses or distortion, and allow for expansion and contraction. Cutting, fitting, drilling, and other operations in connection with sheet metal required to accommodate the work of other trades is to be performed by sheet metal mechanics.

3.5.2 Metal Flashing

Install exposed metal flashing at building corners, sills and eaves, junctions between metal siding and walling. Exposed metal flashing must be
the same material, color, and finish as the specified metal wall panel.

Fasten flashing at a minimum of 8 inches on center, except where flashing is held in place by the same screws that secure covering sheets.

Flashing is to be furnished in at least 8 foot lengths. Exposed flashing is to have 1 inch locked and blind-soldered end joints, and expansion joints at intervals of not more than 16 feet.

Exposed flashing and flashing subject to rain penetration to be bedded in the specified joint sealant.

Isolate flashing which is in contact with dissimilar metals by means of the specified asphalt mastic material to prevent electrolytic deterioration.

Form drips to the profile indicated, with the edge folded back 1/2 inch to form a reinforced drip edge.

3.5.3 Closures

Install metal closure strips at open ends of corrugated or ribbed pattern walls, and at intersection of wall and wall unless open ends are concealed with formed eave flashing; and in other required areas.

Install mastic closure strips at intersection of the wall with metal walling; top and bottom of metal siding; heads of wall openings; and in other required locations.

3.6 WORKMANSHIP

Make lines, arises, and angles sharp and true. Free exposed surfaces from visible wave, warp, buckle, and tool marks. Fold back exposed edges neatly to form a 1/2 inch hem on the concealed side. Make sheet metal exposed to the weather watertight with provisions for expansion and contraction.

Make surfaces to receive sheet metal plumb and true, clean, even, smooth, dry, and free of defects and projections which might affect the application. For installation of items not shown in detail or not covered by specifications conform to the applicable requirements of SMACNA 1793. Provide sheet metal flashing in the angles formed where roof decks abut walls, curbs, ventilators, pipes, or other vertical surfaces and wherever indicated and necessary to make the work watertight.

3.7 ACCEPTANCE PROVISIONS

3.7.1 Erection Tolerances

Erect metal wall panels straight and true with plumb vertical lines correctly lapped and secured in accordance with the manufacturer's written instructions.

3.7.2 Repairs to Finish

Scratches, abrasions, and minor surface defects of finish may be repaired with the specified repair materials. Finished repaired surfaces must be uniform and free from variations of color and surface texture.

Repaired metal surfaces that are not acceptable to the project requirements and/or Contracting Officer are to be immediately removed and replaced with
new material.

3.8 CLEAN-UP AND DISPOSAL

Clean all exposed sheet metal work at completion of installation. Remove metal shavings, filings, nails, bolts, and wires from work area. Remove grease and oil films, excess sealants, handling marks, contamination from steel wool, fittings and drilling debris and scrub the work clean. Exposed metal surfaces must be free of dents, creases, waves, scratch marks, solder or weld marks, and damage to the finish coating.

Collect and place scrap/waste materials in containers. Promptly dispose of demolished materials. Do not allow demolished materials to accumulate on-site; transport demolished materials from government property and legally dispose of them.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ASTM INTERNATIONAL (ASTM)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

36 CFR 1191 Americans with Disabilities Act (ADA) Accessibility Guidelines for Buildings and Facilities

1.2 SYSTEM DESCRIPTION

Submit interior signage samples of the design, detail, sizes, types, and message content shown on the detail drawings, attachments, signage placement schedule (as applicable), conforming to the requirements specified, and placed at the locations indicated. The samples may be installed in the work, provided each sample is identified and location recorded. Submit drawings showing elevations of each type of sign, dimensions, details and methods of mounting or anchoring, mounting height, shape and thickness of materials, and details of construction. A schedule showing the location, each sign type, and message shall be included. Signs shall be complete with lettering, framing as detailed, and related components for a complete installation. Signage shall be obtained from a single manufacturer with edges and corners of finished letterforms and graphics true and clean.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Detail Drawings; G

SD-03 Product Data

Installation; G
1.4 DELIVERY, STORAGE, AND HANDLING

Materials shall be packaged to prevent damage and deterioration during shipment, handling, storage and installation. Product shall be delivered to the jobsite in manufacturer's original packaging and stored in a clean, dry area in accordance with manufacturer's instructions.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Signs, plaques, and dimensional letters shall be the standard product of a manufacturer regularly engaged in the manufacture of such products that essentially duplicate signs that have been in satisfactory use at least 2 years prior to bid opening.

2.2 ROOM IDENTIFICATION/DIRECTIONAL SIGNAGE SYSTEM

2.2.1 Standard Room Signs

Signs shall consist of laminated thermosetting Type MP plastic (three-ply melamine plastic laminate with phenolic core) and shall conform to the following:

a. Units shall be frameless. Corners of signs shall be rounded to 3/4 inch radius.

2.2.2 Changeable Message Strip Signs

Changeable message strip signs shall be of same construction as standard room signs to include a clear sleeve that will accept a paper or plastic insert identifying changeable text. The insert shall be prepared die-cut vinyl letters applied to 0.015 inch rigid vinyl film

2.2.3 Type of Mounting For Signs

Surface mounted signs shall be mounted with 1/16 inch thick vinyl foam tape fabricated from materials that are not corrosive to sign material and mounting surface.

2.2.4 Graphics

Signage graphics for modular signs shall conform to the following:

a. Engraved Copy: Machine engrave letters, numbers, symbols, and other graphics into panel sign on face to produce precisely formed copy and sharp images, incised to uniform depth. Melamine plastic engraving stock used for ADA compliant graphic shall be three-ply lamination contrasting color core meeting ASTM D 635.

2.2.5 Character Proportions and Heights

Letters and numbers on signs conform to 36 CFR 1191.
2.2.6 Raised and Braille Characters and Pictorial Symbol Signs (Pictograms)

Raised letters and numbers on signs shall conform to 36 CFR 1191.

PART 3 EXECUTION

3.1 INSTALLATION

Signs shall be installed plumb and true and in accordance with approved manufacturer's instructions at locations shown on the drawings. The instructions shall include simplified diagrams for the system as installed, the manufacturer's name, model number, service manual, parts list, and brief description of all equipment and their basic operating features. Each set shall be permanently bound and shall have a hard cover. The following identification shall be inscribed on the covers: the words "OPERATING AND MAINTENANCE INSTRUCTIONS", name and location of the facility, name of the Contractor, and contract number. Mounting height and mounting location shall conform to 36 CFR 1191. Required blocking shall be installed. Signs on doors or other surfaces shall not be installed until finishes on such surfaces have been installed. Signs installed on glass surfaces shall be installed with matching blank back-up plates in accordance with manufacturer's instructions and requirements of Section 01 78 23 OPERATION AND MAINTENANCE DATA, package 1.

3.1.1 Protection and Cleaning

Protect the work against damage during construction. Hardware and electrical equipment shall be adjusted for proper operation. Glass, frames, and other sign surfaces shall be cleaned at completion of sign installation in accordance with the manufacturer's approved instructions and the requirements of Section 01 78 23 OPERATION AND MAINTENANCE DATA, Package 1.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

SOCIETY OF AUTOMOTIVE ENGINEERS INTERNATIONAL (SAE)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Corner Guards ; G

SD-04 Samples
 Finish ; G

SD-06 Test Reports
 Corner Guards

SD-07 Certificates
 Corner Guards

1.3 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the project site in manufacturer's original unopened containers with seals unbroken and labels and trademarks intact. Keep materials dry, protected from weather and damage, and stored under cover. Materials shall be stored at approximately 70 degrees F for at least 48 hours prior to installation.
1.4 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

To the maximum extent possible, corner guards, shall be the standard products of a single manufacturer and shall be furnished as detailed. Drawings show general configuration of products required, and items differing in minor details from those shown will be acceptable.

2.2 CORNER GUARDS

2.2.1 Resilient Corner Guards

Corner guard units shall be surface mounted type, radius formed to profile shown. Corner guards shall be _5_ feet high. Mounting hardware, cushions, and base plates shall be furnished. Assembly shall consist of a snap-on corner guard formed from high impact resistant resilient material, mounted on a continuous aluminum retainer. Extruded aluminum retainer shall conform to ASTM B 221, alloy 6063, temper T5 or T6. Flush mounted type guards shall act as a stop for adjacent wall finish material. Factory fabricated end closure caps shall be furnished for top and bottom of surface mounted corner guards. Flush mounted corner guards installed in fire rated wall shall maintain the rating of the wall. Insulating materials that are an integral part of the corner guard system shall be provided by the manufacturer of the corner guard system. Exposed metal portions of fire rated assemblies shall have a paintable surface.

2.3 TRIM, FASTENERS AND ANCHORS

Provide vinyl trim, fasteners and anchors for each specific installation as shown.

2.4 FINISH

2.4.1 Resilient Material Finish

Finish for resilient material shall be embossed texture with colors in accordance with SAE J1545.

2.5 ADHESIVES

Adhesive for resilient material shall be in accordance with manufacturers recommendations.

2.6 COLOR

Color shall be as indicated on the drawings or selected from manufacturers standard colors to match the adjacent wall finish.
PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Corner Guards

Material shall be mounted at location indicated in accordance with manufacturer's recommendations.

-- End of Section --
SECTION 10 51 13

METAL LOCKERS

07/07

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

U.S. GENERAL SERVICES ADMINISTRATION (GSA)

FS AA-L-00486 (Rev J) Lockers, Clothing, Steel

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Types; G

Location; G

Installation

SD-03 Product Data

Material

Locking Devices

Handles

Finish

Locker components

Assembly instructions

SD-04 Samples

Color chips; G
1.3 DELIVERY, HANDLING, AND STORAGE

Deliver lockers and associated materials in their original packages, containers, or bundles bearing the manufacturer's name and the name of the material. Protect from weather, soil, and damage during delivery, storage, and construction.

1.4 FIELD MEASUREMENTS

To ensure proper fits, make field measurements prior to the preparation of drawings and fabrication. Verify correct location.

1.5 QUALITY ASSURANCE

1.5.1 Color Chips

Provide a minimum of three color chips, not less than 3 inches square, of each color from the Manufacturer's full range of available selections.

Government may request performance-characteristic tests on assembled lockers. Tests and results must conform to FS AA-L-00486. Lockers not conforming will be rejected.

PART 2 PRODUCTS

2.1 TYPES

Locker must have the following type and size in the location and quantities indicated.

2.1.1 Double-Tier

Double-tier lockers must be as follows:

Type DTC-2: Double-tier locker 12 inches wide, 18 inches deep, and 72 inches high, attached to a 6-inch high closed base.

2.2 MATERIAL

2.2.1 Steel Sheet

ASTM A 1008/A 1008M, commercial quality, minimized spangle material. Prepare material surfaces for baked enamel finishing in accordance with FS AA-L-00486. Fabricate locker bodies from not less than 0.0239-inch thick steel sheet.

2.2.2 Finish

FS AA-L-00486.

2.2.2.1 Color

As selected.
2.3 COMPONENTS

2.3.1 Built-In Locks

FS AA-L-00486. Provide locking devices as a padlock eye in the door latching mechanism.

2.3.2 Coat Hooks

FS AA-L-00486, chromium plated.

2.3.3 Hanger Rods

FS AA-L-00486.

2.3.4 Door Handles

FS AA-L-00486. Provide steel handles with a chromium coating.

2.3.5 Doors

FS AA-L-00486, not less than 0.0598 inch thick steel sheet, vented.

2.3.5.1 Hinges

In addition to the requirements of FS AA-L-00486, provide 5-knuckle hinges, minimum 2 inches high. Fabricate knuckle hinges from not less than 0.0787 inch thick steel sheet. Weld or bolt hinges to the door frame. Weld, bolt, or rivet hinges to the door.

2.3.5.2 Latching Mechanisms

FS AA-L-00486.

2.3.6 Latch Strikes

FS AA-L-00486. Fabricate from not less than 0.0787 inch thick steel sheet, except latch strike may be continuous from top to bottom and fabricated as part of the door framing.

2.3.7 Silencers

FS AA-L-00486.

2.3.8 Back and Side Panels, Tops, and Bottoms

FS AA-L-00486, not less than 0.0474 inch thick steel sheet.

2.3.9 Shelves

FS AA-L-00486. Fabricate from not less than 0.0598 inch thick steel sheet.

2.3.10 Base Panels

FS AA-L-00486.

2.3.11 Number Plates

FS AA-L-00486. Aluminum. Provide consecutive numbers from 1 to 8.
2.3.12 Fastening Devices

Provide bolts, nuts, and rivets as specified in FS AA-L-00486.

PART 3 EXECUTION

3.1 ASSEMBLY AND INSTALLATION

Assemble lockers according to the locker manufacturer's instructions. Align lockers horizontally and vertically. Secure lockers to wall and base with screws as indicated. Bolt adjacent lockers together. Adjust doors to operate freely without sticking or binding and to ensure they close tightly.

3.2 NUMBERING SYSTEM

Install number plates on lockers consecutively with odd numbers on top and even numbers on bottom.

3.3 FIELD QUALITY CONTROL

3.3.1 Testing

Government may request performance-characteristic tests on assembled lockers in accordance with FS AA-L-00486. Lockers not conforming will be rejected.

3.3.2 Repairing

Remove and replace damaged and unacceptable portions of completed work with new.

3.3.3 Cleaning

Clean surfaces of the work, and adjacent surfaces soiled as a result of the work, in an approved manner. Remove equipment, surplus materials, and rubbish from the site.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES

SD-03 Product Data
Window Blinds; G
Installation
SD-08 Manufacturer's Instructions
Window Blinds; G

SD-10 Operation and Maintenance Data
Window Blinds; G

1.3 SYSTEM DESCRIPTION

Provide window treatment, conforming to NFPA 701, complete with necessary brackets, fittings, and hardware. Each window treatment type shall be a complete unit provided in accordance with paragraph WINDOW TREATMENT PLACEMENT SCHEDULE. Mount and operate equipment in accordance with manufacturer's instructions. Windows to receive a treatment shall be completely covered.

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver components to the jobsite in the manufacturer's original packaging with the brand or company name, item identification, and project reference clearly marked. Store components in a dry location that is adequately ventilated and free from dust, water, or other contaminants and has easy access for inspection and handling. Store materials flat in a clean dry area with temperature maintained above 50 degrees F. Do not open containers until needed for installation unless verification inspection is required.
1.5 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period.

PART 2 PRODUCTS

2.1 WINDOW BLINDS

Provide each blind, including hardware, accessory items, mounting brackets and fastenings, as a complete unit produced by one manufacturer. All parts shall be one color, unless otherwise indicated, to match the color of the blind slat. Treat steel features for corrosion resistance.

2.1.1 Horizontal Blinds

Provide horizontal blinds with 1 inch slats. Blind units shall be capable of nominally 180 degree partial tilting operation and full-height raising. Blinds shall be inside mount. Tapes for 1 inch slats shall be braided polyester or nylon.

2.1.1.1 Head Channel and Slats

Provide head channel made of steel or aluminum with corrosion-resistant finish nominal 0.024 inch for 1 inch slats. Provide slats of aluminum, not less than 0.008 inch thick, and of sufficient strength to prevent sag or bow in the finished blind. Provide a sufficient amount of slats to assure proper control, uniform spacing, and adequate overlap. Enclose all hardware in the headrail.

2.1.1.2 Controls

The slats shall be tilted by a transparent tilting wand, hung vertically by its own weight, and shall swivel for easy operation. Provide a tilter control of enclosed construction. Provide moving parts and mechanical drive made of compatible materials which do not require lubrication during normal expected life. The tilter shall tilt the slats to any desired angle and hold them at that angle so that any vibration or movement of ladders and slats will not drive the tilter and change the angle of slats. Include a mechanism to prevent over tightening. Provide a wand of sufficient length to reach to within 5 feet of the floor.

2.1.1.3 Intermediate Brackets

Provide intermediate brackets for installation, as recommended by the manufacturer, of blinds over 60 inch wide.

2.1.1.4 Bottom Rail

Provide bottom rail made of corrosion-resistant steel with factory applied finish. Provide closed oval shaped bottom rail with double-lock seam for maximum strength. Bottom rail and end caps to match slats in color.

2.1.1.5 Braided Ladders

Provide braided ladders of 100 percent polyester yarn, color to match the slat color. Space ladders 15.2 slats per foot of drop in order to provide a uniform overlap of the slats in a closed position.
2.2 COLOR

Provide color, pattern and texture as indicated on the drawings.

PART 3 EXECUTION

3.1 EXAMINATION

After becoming familiar with details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing the work.

3.2 INSTALLATION

3.2.1 Horizontal Blinds

Perform installation of Horizontal Blinds in accordance with the approved detail drawings and manufacturer's installation instructions. Install units level, plumb, secure, and at proper height and location relative to window units. Provide and install supplementary or miscellaneous items in total, including clips, brackets, or anchorages incidental to or necessary for a sound, secure, and complete installation. Do not start installation until completion of room painting and finishing operations.

3.3 CLEAN-UP

Upon completion of the installation, free window treatments from soiling, damage or blemishes; and adjust them for form and appearance and proper operating condition. Repair or replace damaged units as directed by the Contracting Officer. Isolate metal parts from direct contact with concrete, mortar, or dissimilar metals. Ensure blinds installed in recessed pockets can be removable without disturbing the pocket. The entire blind, when retracted, shall be contained behind the pocket. For blinds installed outside the jambs and mullions, overlap each jamb and mullion 0.75 inch or more when the jamb and mullion sizes permit. Include all hardware, brackets, anchors, fasteners, and accessories necessary for a complete, finished installation.

3.4 SCHEDULE

Provide and install window blinds at each existing window located with in the office/administration portion of the building.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D 709 (2001; R 2007) Laminated Thermosetting Materials

FM GLOBAL (FM)

FM APP GUIDE (updated on-line) Approval Guide

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 13 (2010; Errata 10-1; TIA 10-1) Standard for the Installation of Sprinkler Systems

UNDERWRITERS LABORATORIES (UL)

UL 668 (2004; Reprint Aug 2008) Hose Valves for Fire-Protection Service

1.2 SYSTEM DESCRIPTION

Design and provide automatic wet pipe fire extinguishing sprinkler systems for complete fire protection coverage throughout the entire building.

1.3 SPRINKLER SYSTEM DESIGN

Except as modified herein, design automatic wet pipe fire extinguishing sprinkler systems in accordance with the required and advisory provisions of NFPA 13, including all recommendations and advisory portions, which shall be considered mandatory; this includes advisory provisions listed in the appendices of such standard(s), as though the word "shall" had been substituted for the word "should" wherever it appears. Design system by hydraulic calculations for uniform distribution of water over the design area. Hydraulic calculations shall assume a12 psi pressure loss for the backflow preventer assembly. Hydraulic calculations shall assume the pressure loss for the backflow preventer assembly is the same as the losses indicated on the manufacturer's data sheets. Locate sprinklers in a consistent pattern with ceiling grid, lights, and air supply diffusers.
Provide sprinklers and piping system layout. All Devices and equipment for fire protection service shall be UL Fire Prot Dir listed or FM APP GUIDE approved for use in wet pipe sprinkler systems. Provide seismic protection for the sprinkler system. Design and install seismic protection in accordance with the requirements of NFPA 13 section titled "Protection of Piping Against Damage Where Subject to Earthquakes."

1.3.1 Location of Sprinklers

Sprinklers in relation to the ceiling and the spacing of sprinklers shall not exceed that permitted by NFPA 13 for hazard occupancy as indicated. Occupancy shall be light hazard unless indicated otherwise. Uniformly space sprinklers on the branch piping. Sprinklers shall provide coverage throughout 100 percent of the building. All sprinkler heads shall be positioned in the central of 2x2 ceiling tiles unless noted otherwise.

1.3.2 Water Distribution

Distribution shall be uniform throughout the area in which the sprinklers will open. Discharge from individual sprinklers in hydraulically most remote area shall be between 100 percent and 120 percent of the specified density.

1.3.3 Density of Application of Water

Size pipe to provide the specified density when the system is discharging the specified total maximum required flow. Application to horizontal surfaces below the sprinklers shall be 10 gpm per sq ft for Light Hazard Occupancies, 15 gpm per sq ft for Ordinary Hazard Group I Occupancies and 20 gpm per sq ft for Ordinary Hazard Group II Occupancies.

1.3.4 Sprinkler Discharge Area

Permissible decreases and required increases from NFPA 13 shall be applied to an initial hydraulically most remote area of 3000 sq ft.

1.3.5 Outside Hose Allowances

Hydraulic calculations shall include a hose allowance of gpm for outside hose streams in light hazard and 500 gpm for outside hose stream in ordinary hazard occupancy. Flow test to be provided by the government.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval.

Partial submittals and submittals not fully complying with the requirements and recommended practices of NFPA 13 and this specification section shall be returned disapproved without review. This contract stipulation is non-negotiable.

The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
Shop Drawings; G

Prepare 24 by 36 inch detail working drawings of sprinklers and piping. Floor plans shall be drawn to a scale not less than 1/8" = 1'-0". Show data essential for proper installation of each system. Show details, plan view, elevations and sections of the systems supply and piping. Show piping schematic of systems supply, devices, valves, pipe and fittings. Show point to point electrical wiring diagrams. Submit drawings signed by a registered fire protection engineer. Provide three copies of the Sprinkler System Shop Drawings, no later than 21 days prior to the start of sprinkler system installation.

SD-03 Product Data

Pipe; G
Fittings; G
Valves, including gate, check, and globe; G
Sprinklers; G
Pipe hangars and supports; G
Mechanical couplings; G
Seismic Bracing; G

Annotate descriptive data to show the specific model, type, and size of each item. Catalog cuts shall also indicate UL Listing/FM Approval and country of manufacture.

SD-05 Design Data

Hydraulic Calculations; G

Submit computer program generated hydraulic calculations to substantiate compliance with hydraulic design requirements. Calculations shall be performed by computer using software intended specifically for fire protection system design. Calculations shall include isometric diagram indicating hydraulic nodes and pipe segments. Submit name of software program used.

SD-06 Test Reports

Preliminary Test Report; G

SD-07 Certificates

Sprinkler System Installer; G

SD-11 Closeout Submittals

As-built drawings
On-site training

1.5 QUALIFICATIONS

1.5.1 Fire Protection Engineer

A Fire Protection Engineer is a registered professional engineer (P.E.) who has passed the fire protection engineering written examination administered by the National Council of Examiners for Engineering and Surveys (NCEES)
or a registered P.E. in a related engineering discipline with a minimum of 5 years experience, dedicated to fire protection engineering that can be verified with documentation.

1.5.2 Sprinkler System Installer

The Sprinkler System Installer shall be regularly engaged in the installation of the type and complexity of system specified in the Contract documents, and shall have served in a similar capacity for at least three systems that have performed in the manner intended for a period of not less than 6 months. Installation drawings, shop drawings and as-built drawings shall be prepared, by or under the supervision of, an system technician who is experienced with the types of works specified herein, and is currently certified by the National Institute for Certification in Engineering Technologies (NICET) as an engineering technician with minimum Level III certification in Automatic Sprinkler System program or by a fire protection engineer.

1.6 QUALITY ASSURANCE

1.6.1 Material and Equipment Qualifications

Provide materials and equipment that are standard products of manufacturers regularly engaged in the manufacture of such products, which are of a similar material, design and workmanship. Standard products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year use shall include applications of equipment and materials under similar circumstances and of similar size. The product shall have been for sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2 year period.

1.6.2 Alternative Qualifications

Products having less than a two-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturer's factory or laboratory tests, can be shown.

1.6.3 Manufacturer's Nameplate

Each item of equipment shall have a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

1.6.4 Field Fabricated Nameplates

ASTM D 709. Provide laminated plastic nameplates for each equipment enclosure, relay, switch, and device; as specified in the technical sections or as indicated on the drawings. Each nameplate inscription shall identify the function and, when applicable, the position. Nameplates shall be melamine plastic, 0.125 inch thick, white with black center core. Surface shall be matte finish. Corners shall be square. Accurately align lettering and engrave into the core. Minimum size of nameplates shall be one by 2.5 inches. Lettering shall be a minimum of 0.25 inch high normal block style.
1.7 ACCESSIBILITY

Install all work so that parts requiring periodic inspection, operation, maintenance, and repair are readily accessible. Install concealed valves, expansion joints, controls, dampers, and equipment requiring access, in locations freely accessible through access doors.

1.8 DELIVERY, STORAGE AND HANDLING

All equipment delivered and placed in storage shall be housed in a manner to preclude any damage from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Additionally, all pipes shall either be capped or plugged until installed.

PART 2 PRODUCTS

2.1 ABOVEGROUND PIPING COMPONENTS

All components of the aboveground piping shall fully comply with the requirements and recommended practices of NFPA 13 and this specification section. Aboveground piping shall be steel.

2.1.1 Steel Pipe

Pipe shall be rigid black steel. Steel piping shall be Schedule 40 for sizes less than 8 inches and Schedule 10 for sizes 8 inches or larger. Fittings into which sprinklers, sprinkler riser nipples, or drop nipples are threaded shall be welded, threaded, or grooved-end type. Plain-end fittings with mechanical couplings, fittings that use steel gripping devices to bite into the pipe and segmented welded fittings shall not be permitted. Rubber gasketed grooved-end pipe and fittings with mechanical couplings shall be permitted in pipe sizes 1.5 inches and larger. Fittings, mechanical couplings, and rubber gaskets shall be supplied by the same manufacturer. Steel piping with wall thickness less than Schedule 30 shall not be threaded.

2.1.2 Grooved Mechanical Joints and Fittings

Grooved couplings, fittings and grooving tools shall be products of the same manufacturer.

2.1.3 Sprinklers

Provide nominal 0.50 inch. Sprinklers with internal O-rings shall not be used. Sprinklers shall be used in accordance with their listed coverage limitations. Sprinklers shall have a polished stainless steel finish. Temperature classification shall be as indicated. Sprinklers in high heat areas including attic spaces or in close proximity to unit heaters shall have temperature classification in accordance with NFPA 13. Extended coverage sprinklers shall not be used. Deflector shall not be more than 3 inches below suspended ceilings. Ceiling plates shall not be more than 0.5 inch deep. Ceiling cups shall not be permitted.

2.1.4 Pipe Supports

Provide Pipe hangars and supports and Seismic Bracing in accordance with NFPA 13.
2.2 ACCESSORIES

2.2.1 Sprinkler Cabinet

Provide metal cabinet with extra sprinklers and sprinkler wrench adjacent to each alarm valve. The number and types of extra sprinklers shall be as specified in NFPA 13.

2.2.2 Pipe Escutcheon

Provide split hinge metal plates for piping entering walls, floors, and ceilings in exposed spaces. Provide polished stainless steel plates or chromium-plated finish on copper alloy plates in finished spaces. Provide paint finish on metal plates in unfinished spaces.

PART 3 EXECUTION

3.1 INSPECTION BY FIRE PROTECTION ENGINEER

The Fire Protection Engineer shall inspect the sprinkler system periodically during the installation to assure the sprinkler system is being provided and installed in accordance with the contract requirements and the approved sprinkler system submittal(s). The Fire Protection Engineer shall attend both the preliminary and final tests, and shall sign the test results. After the preliminary testing has been completed, the Fire Protection Engineer shall certify in writing the system is ready for the final inspections and tests. This report shall document any discrepancies found and what actions will be taken to correct. Any discrepancy noted during the periodic site visits or the preliminary testing shall be brought to the attention of the Contracting Officer in writing, no later than three working days after the discrepancy is discovered.

3.2 ABOVEGROUND PIPING INSTALLATION

The methods of fabrication and installation of the aboveground piping shall fully comply with the requirements and recommended practices of NFPA 13 and this specification section.

3.2.1 Piping in Finished Areas

In areas with suspended or dropped ceilings and in areas with concealed spaces above the ceiling, piping shall be concealed above ceilings. Piping shall be inspected, tested and approved before being concealed. Risers and similar vertical runs of piping in finished areas shall be concealed.

3.2.2 Pendent Sprinklers

Where sprinklers are installed below suspended or dropped ceilings, drop nipples shall be cut such that sprinkler ceiling plates or escutcheons are of a uniform depth throughout the finished space. The outlet of the reducing coupling shall not extend more than 1 inch below the underside of the ceiling. Pendent sprinklers in suspended ceilings shall be a minimum of 6 inches from ceiling grids.

3.2.3 Reducers

Reductions in pipe sizes shall be made with one-piece tapered reducing fittings. Bushings are prohibited.
3.2.4 Pipe Penetrations

Cutting structural members for passage of pipes or for pipe-hanger fastenings will not be permitted. Pipes that must penetrate concrete or masonry walls or concrete floors shall be core-drilled and provided with pipe sleeves. Each sleeve shall be Schedule 40 galvanized steel, ductile iron or cast iron pipe and shall extend through its respective wall or floor and be cut flush with each wall surface. Sleeves shall provide required clearance between the pipe and the sleeve per NFPA 13. The space between the sleeve and the pipe shall be firmly packed with mineral wool insulation. Where pipes penetrate fire walls, fire partitions, or floors, pipes shall be fire stopped in accordance with Section 07 84 00 FIRESTOPPING. In penetrations that are not fire-rated or not a floor penetration, the space between the sleeve and the pipe shall be sealed at both ends with plastic waterproof cement that will dry to a firm but pliable mass or with a mechanically adjustable segmented elastomer seal.

3.2.5 Inspector's Test Connection

Provide test connections approximately 6 feet above the floor for each sprinkler system or portion of each sprinkler system equipped with an alarm device. Provide test connection piping to a drain location that can accept full flow where the discharge will be readily visible and where water may be discharged without property damage. Discharge to floor drains, janitor sinks or similar fixtures shall not be permitted. Provide discharge orifice of same size as corresponding sprinkler orifice.

3.2.6 Backflow Preventer Test Connection

Provide downstream of the backflow prevention assembly UL 668 hose valves with 2.5 inch National Standard male hose threads with cap and chain. Provide one valve for each 250 gpm of system demand or fraction thereof. Provide a permanent sign in accordance with paragraph entitled "Identification Signs" which reads, "Test Valve."

3.2.7 Drains

Main drain piping shall be provided to discharge at a safe point outside the building. Auxiliary drains shall be provided as required by NFPA 13.

3.2.8 Installation of Fire Department Connection

Connection shall be mounted on the exterior wall approximately 3 feet above finished grade. The piping between the connection and the check valve shall be provided with an automatic drip in accordance with NFPA 13 and arranged to drain to the outside.

3.2.9 Identification Signs

Signs shall be affixed to each control valve, inspector test valve, main drain, auxiliary drain, test valve, and similar valves as appropriate or as required by NFPA 13. Valve identification signs shall be minimum 6 inches wide by 2 inches high with enamel baked finish on minimum 18 gauge steel or 0.024 inch aluminum with red letters on a white background or white letters on red background. Hydraulic design data nameplates shall be permanently affixed to each sprinkler riser as specified in NFPA 13.
3.3 ELECTRICAL WORK

Except as supplemented and modified herein, electric equipment and wiring shall be in accordance with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. 28 31 76 INTERIOR FIRE ALARM AND MASS NOTIFICATION SYSTEM

3.4 PIPE PAINTING AND COLOR CODE MARKING

Paint and color code mark sprinkler piping system as specified in Section 09 90 00 PAINTS AND COATINGS.

3.5 PRELIMINARY TESTS

The system, including the underground water mains, and the aboveground piping and system components, shall be tested to assure that equipment and components function as intended. The underground and aboveground interior piping systems and attached appurtenances subjected to system working pressure shall be tested in accordance with NFPA 13 and NFPA 24. Submit request to schedule Preliminary Tests, no later than 14 days prior to the proposed start of the tests. Upon completion of specified tests, the Contractor shall submit for approval a Preliminary Test Report.

3.5.1 Underground Piping

3.5.1.1 Flushing

Underground piping shall be flushed in accordance with NFPA 24.

3.5.2 Aboveground Piping

3.5.2.1 Hydrostatic Testing

Aboveground piping shall be hydrostatically tested in accordance with NFPA 13.

3.5.2.2 Backflow Prevention Assembly Forward Flow Test

Each backflow prevention assembly shall be tested at system flow demand, including all applicable hose streams, as specified in NFPA 13. The Contractor shall provide all equipment and instruments necessary to conduct a complete forward flow test, including 2.5 inch diameter hoses, playpipe nozzles, calibrated pressure gauges, and pitot tube gauge. The Contractor shall provide all necessary supports to safely secure hoses and nozzles during the test. At the system demand flow, the pressure readings and pressure drop (friction) across the assembly shall be recorded. A metal placard shall be provided on the backflow prevention assembly that lists the pressure readings both upstream and downstream of the assembly, total pressure drop, and the system test flow rate determined during the preliminary testing. The pressure drop shall be compared to the manufacturer's data and the readings observed during the final inspections and tests.

3.6 FINAL ACCEPTANCE TEST

Final Acceptance Test shall begin only when the Preliminary Test Report has been approved. Submit request to schedule Final Acceptance Test, no later than 14 days prior to the proposed start of the tests. Notification shall include a copy of the Contractor's Material & Test Certificates.
An experienced technician regularly employed by the system installer shall be present during the inspection. The Fire Protection Engineer shall attend the final inspections and tests. At this inspection, repeat any or all of the required tests as directed. Correct defects in work provided by the Contractor, and make additional tests until the systems comply with contract requirements. Furnish appliances, equipment, electricity, instruments, connecting devices, and personnel for the tests. The Government will furnish water for the tests. The Southern Division, Naval Facilities Engineering Command, Fire Protection Engineer, will witness formal tests and approve systems before they are accepted.

3.7 ON-SITE TRAINING

Submit request to schedule the On-site Training, at least 14 days prior to the start of related training but prior to the final inspections and tests. The sprinkler contractor shall conduct a training course for operating and maintenance personnel as designated by the Contracting Officer. Training shall be provided for a period of 8 hours of normal working time and shall start after the system is functionally complete and after the Final Acceptance Test. The On-Site Training shall cover all of the items contained in the approved Operating and Maintenance Instructions.

-- End of Section --
SECTION 23 20 00

HVAC PIPING

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C606 (2006) Grooved and Shouldered Joints

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2008; Errata 2009) Structural Welding Code - Steel

ASME INTERNATIONAL (ASME)

ASME B1.20.1 (1983; R 2006) Pipe Threads, General Purpose (Inch)

ASME B16.21 (2005) Nonmetallic Flat Gaskets for Pipe Flanges

ASME B16.22 (2001; R 2005) Standard for Wrought Copper and Copper Alloy Solder Joint Pressure Fittings

ASME B31.9 (2008) Building Services Piping

ASME B40.100 (2005) Pressure Gauges and Gauge Attachments
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM A 653/A 653M</td>
<td>(2009) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process</td>
</tr>
<tr>
<td>ASTM A 733</td>
<td>(2003e1; R 2009) Standard Specification for Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples</td>
</tr>
<tr>
<td>ASTM D 3308</td>
<td>(2006) PTFE Resin Skived Tape</td>
</tr>
<tr>
<td>ASTM D 520</td>
<td>(2000; R 2005) Zinc Dust Pigment</td>
</tr>
<tr>
<td>ASTM F 1199</td>
<td>(1988; R 2004) Cast (All Temperatures and Pressures) and Welded Pipe Line Strainers (150 psig and 150 degrees F Maximum)</td>
</tr>
<tr>
<td>MSS SP-58</td>
<td>(2002) Standard for Pipe Hangers and Supports - Materials, Design and</td>
</tr>
</tbody>
</table>
1.2 SYSTEM DESCRIPTION

Provide the water systems having the minimum service (design) temperature-pressure rating indicated. Provision of the piping systems, including materials, installation, workmanship, fabrication, assembly, erection, examination, inspection, and testing shall be in accordance with the required and advisory provisions of ASME B31.9 except as modified or supplemented by this specification section or design drawings. This specification section covers the water systems piping which is located within the building.

1.3 SUBMITTALS

Submit the following:

Product Data

Grooved Mechanical Connections For Steel
Grooved Mechanical Connections For Copper

Test Reports

Piping welds NDE report
Pressure tests reports

Report shall be provided in bound 8 1/2 by 11 inch booklets. In the reports, document all phases of the tests performed. Include initial test summaries, all repairs/adjustments made, and the final test results.
Certificates

Welding Procedures and Qualifications

Operation and Maintenance Data

Requirements are specified Section 017700 CLOSEOUT PROCEDURES, except as supplemented and modified by this specification section.

A maintenance manual in bound 8 1/2 by 11 inch booklets listing routine maintenance procedures, possible breakdowns and repairs, and a trouble shooting guide.

1.4 MODIFICATIONS TO REFERENCES

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction", or words of similar meaning, to mean the Contracting Officer.

1.4.1 Definitions

FOR THE INTERNATIONAL CODE COUNCIL (ICC) CODES REFERENCED IN THE CONTRACT DOCUMENTS, ADVISORY PROVISIONS SHALL BE CONSIDERED MANDATORY, THE WORD "SHOULD" SHALL BE INTERPRETED AS "SHALL." REFERENCE TO THE "CODE OFFICIAL" SHALL BE INTERPRETED TO MEAN THE "CONTRACTING OFFICER".

1.5 SAFETY REQUIREMENTS

Exposed moving parts, parts that produce high operating temperature, parts which may be electrically energized, and parts that may be a hazard to operating personnel shall be insulated, fully enclosed, guarded, or fitted with other types of safety devices. Safety devices shall be installed so that proper operation of equipment is not impaired.

1.6 DELIVERY, STORAGE, AND HANDLING

Protect stored items from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Proper protection and care of all material both before and during installation shall be the Contractor's responsibility. Any materials found to be damaged shall be replaced at the Contractor's expense. During installation, cap piping and similar openings to keep out dirt and other foreign matter. Any porous materials found to be contaminated with mold or mildew will be replaced at the Contractor's expense. Non-porous materials found to be contaminated with mold or mildew will be disinfected and cleaned prior to installation.

1.7 PROJECT/SITE CONDITIONS

1.7.1 Verification of Dimensions

The Contractor shall become familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work.
1.7.2 Drawings

Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. The Contractor shall carefully investigate the plumbing, fire protection, electrical, structural and finish conditions that would affect the work to be performed and shall arrange such work accordingly, furnishing required offsets, fittings, and accessories to meet such conditions.

1.7.3 Accessibility

Install all work so that parts requiring periodic inspection, operation, maintenance, and repair are readily accessible.

PART 2 PRODUCTS

2.1 STANDARD COMMERCIAL PRODUCTS

Materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacturing of such products, which are of a similar material, design and workmanship. The standard products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening.

The 2-year use shall include applications of equipment and materials under similar circumstances and of similar size. The 2 years experience shall be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturer’s catalogs, or brochures.

Products having less than a 2 year field service record shall be acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer’s factory tests, can be shown. System components shall be environmentally suitable for the indicated locations.

The equipment items shall be supported by service organizations. These service organizations shall be reasonably convenient to the equipment installation and able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

2.2 STEEL PIPING

Water piping shall be steel pipe or copper tubing. Provide steel piping with an ANSI/ASME Class 125 service rating, which for 150 degrees F, the pressure rating is 175 psig.

2.2.1 Pipe

Steel pipe, conform to ASTM A 53/A 53M, Schedule 40, Type E or S, Grades A or B. Do not use Type F pipe.

2.2.2 Fittings and End Connections (Joints)

Piping and fittings shall have either threaded, grooved, or welded connections to match the existing piping. The manufacturer of each fitting shall be permanently identified on the body of the fitting in accordance with MSS SP-25.
2.2.2.1 Threaded Connections

2.2.2.2 Flanged Connections

Flanges shall conform to ASME B16.1, Class 150. Gaskets shall be nonasbestos compressed material in accordance with ASME B16.21, 1/16-inch thickness, full face or self-centering flat ring type. These gaskets shall contain aramid fibers bonded with styrene butadiene rubber (SBR) or nitrile butadiene rubber (NBR). Bolts, nuts, and bolt patterns shall conform to ASME B16.1.

2.2.2.3 Welded Connections

Welded valves and pipe connections (both butt-welds and socket-welds types) shall conform to ASME B31.9. Butt-welded fittings shall conform to ASME B16.9. Socket-welded fittings shall conform to ASME B16.11. Welded fittings shall be identified with the appropriate grade and marking symbol.

2.2.2.4 Grooved Mechanical Connections For Steel

Rigid grooved mechanical connections may only be used in serviceable aboveground locations where the temperature of the circulating medium does not exceed 230 degrees F. Flexible grooved connections shall be used only as a flexible connector with grooved pipe system. Unless otherwise specified, grooved piping components shall meet the corresponding criteria specified for the similar welded, flanged, or threaded component specified herein.

Each grooved mechanical joint shall be a system, including coupling housing, gasket, fasteners, all furnished by the same manufacturer. Joint installation shall be in compliance with joint manufacturer's written instructions.

Use fitting and coupling houses of malleable iron conforming to ASTM A 47/A 47M, Grade 32510; ductile iron conforming to ASTM A 536, Grade 65-45-12; or steel conforming ASTM A 106/A 106M, Grade B or ASTM A 53/A 53M. Use gaskets of molded synthetic rubber with central cavity, pressure responsive configuration and conforming to ASTM D 2000 Grade No. 2CA615A15B44F17Z for circulating medium up to 230 degrees F or Grade No. M3BA610A15B44Z for circulating medium up to 200 degrees F. Grooved mechanical connections shall conform to AWWA C606. Coupling nuts and bolts shall be steel and shall conform to ASTM A 183. Pipe connections and fittings shall be the product of the same manufacturer. Provide joint installation in compliance with joint manufacturer's written instructions.

2.2.2.5 Dielectric Waterways and Flanges

Provide dielectric waterways with a water impervious insulation barrier capable of limiting galvanic current to 1 percent of short circuit current in a corresponding bimetallic joint. When dry, insulation barrier shall be able to withstand a 600-volt breakdown test. Provide dielectric waterways constructed of galvanized steel and have threaded end connections to match connecting piping. Dielectric waterways shall be suitable for the required operating pressures and temperatures. Provide dielectric flanges with the same pressure ratings as standard flanges and provide complete electrical
isolation between connecting pipe and/or equipment as described herein for dielectric waterways.

2.3 VALVES

Provide valves with a ANSI/ASME Class 125 service rating, which for 150 degrees F, the pressure rating is 175 psig.

Valves in sizes larger than 1 inch and used on steel pipe systems may be provided with rigid grooved mechanical joint ends. Such grooved end valves shall be subject to the same requirements as rigid grooved mechanical joints and fittings and, shall be furnished by the same manufacturer as the grooved pipe joint and fitting system.

2.3.1 Gate Valve

Gate valves 2-1/2 inches and smaller shall conform to MSS SP-80 Class 125 and shall be bronze with wedge disc, rising stem and threaded, soldered, or flanged ends. Gate valves 3 inches and larger shall conform to MSS SP-70, Class 125, cast iron with bronze trim, outside screw and yoke, and flanged or threaded ends.

2.3.2 Globe and Angle Valve

Globe and angle valves 2-1/2 inches and smaller shall conform to MSS SP-80, Class 125. Globe and angle valves 3 inches and larger shall conform to MSS SP-85, Class 125.

2.3.3 Check Valve

Check valves 2-1/2 inches and smaller shall conform to MSS SP-80. Check valves 3 inches and larger shall conform to MSS SP-71, Class 125.

2.3.4 Ball Valve

A. Design

Chilled Water Service

1. Designed so that condensation will not occur on exposed surfaces with indoor air at 85 degrees F and 70% R.H. (74 degrees F dew point) with 45 degrees F water flowing in the piping.
2. A non-condensing design with a non-metallic plastic handle is extending through the insulation accessible to the user. This is suitable for insulation thickness up to 2".
3. The reinforced plastic tee handle shall have a vapor seal sleeve to provide a stationary surface to affix insulation.
4. The valve handle must have an accessible internal memory stop and indicator.
5. The valve-packing nut must be accessible without removing the insulation.
6. Each handle shall have an identification tag affixed or printed on the top of the handle clear of the insulation.

B. Construction

1. Blow-out proof stem.
2. Standard port ball size: at least 75% of connecting tube ID.
3. Chromium plated ball.
4. Brass body with sweat or FPT end connections.
5. Reinforced TFE seat and stuffing box; or over O-ring stem seals.
BZ Style
7. Each valve shall be factory tested 100 psi air under water.

C. Minimum Ratings
1. Chilled water - 400 psi at 160 degrees F.
2. Hot Water - 400 psi at 250 degrees F.

D. Installation
1. Insulator must glue the pipe insulation to the plastic vapor seal on the extended plastic handle for chilled water service.
2. Install in accordance with manufacturers' instructions.

2.3.5 Square Head Cocks

Provide copper alloy or cast-iron body with copper alloy plugs, suitable for 125 psig water working pressure.

2.3.6 Calibrated Balancing Valves

Copper alloy or cast iron body, copper alloy or stainless internal working parts. Provide valve calibrated so that flow can be determined when the temperature and pressure differential across valve is known. Valve shall have an integral pointer, which registers the degree of valve opening. Valve shall function as a service valve when in fully closed position. Valve shall be constructed with internal seals to prevent leakage and shall be supplied with preformed insulation.

Provide valve bodies with tapped openings and pipe extensions with positive shutoff valves outside of pipe insulation. The pipe extensions shall be provided with quick connecting hose fittings for a portable differential pressure meter connections to verify the pressure differential. Provide metal tag on each valve showing the gallons per minute flow for each differential pressure reading. In lieu of the balancing valve with integral metering connections, a ball valve or plug valve with a separately installed orifice plate or venturi tube may be used for balancing.

2.3.7 Drain Valves

A. Design
Chilled Water Service
1. Designed so that condensation will not occur on exposed surfaces with indoor air at 85 degrees F and 70% R.H. (74 degrees dew point) with 45 degrees F water flowing in the piping.
2. A non-condensing design with a non-metallic plastic extension extending through the insulation is accessible to the user.
3. The drain valve shall be a brass body ball valve factory insulated to prevent the water column from extending through the insulation.
4. The valve shall have an extended plastic handle with non-metallic stem.
5. An optional 3/4" thick factory installed insulation sleeve with a screwdriver port for valve operation.
6. The plastic extension must have a 3/4" hose end with a cap to prevent moist air from condensing on the cold ball surface.
7. Drain valve size shall be 1/4" for 1/2" and 3/4" pipe size and 1/2" for 1" to 2" pipe.

B. Construction
1. The valves shall have brass bodies.
2. Each valve shall be factory tested 100 psi air under water.
C. Minimum Ratings
 1. Chilled Water - 400 psi at 160 degrees F.

2.3.8 Air Venting Valves

A. Design
 Chilled Water Service

 1. Designed so that condensation will not occur on exposed surfaces with indoor air at 85 degrees F and 70% R.H. (74 degrees F dew point) with 45 degrees F water flowing in the piping.
 2. A non-condensing design with a non-metallic plastic extension extending through the insulation is accessible to the user.
 3. The vent valve shall be a 1/4" brass ball valve with extended plastic handle.
 4. An optional 3/4" thick factory installed insulation sleeve for extended valve handle.
 5. The plastic extension must have a removable plug to prevent moist air from condensing on the cold ball valve surface.
 6. Where shown on the plans, a 'U' shaped copper tube assembly threaded to the top of the air vent shall be provided.

B. Construction
 1. The ball valve shall have brass body and chromium-plated ball.
 2. Each valve shall be factory tested 100 psi under water.

C. Minimum Ratings
 1. Chilled water - 400 psi at 160 degrees F.

D. Installation
 1. Insulator must glue the pipe insulation to the factory-installed insulation for chilled water service.
 2. Install in accordance with manufacturers' instructions.

2.4 PIPING ACCESSORIES

2.4.1 Combination Strainer and Pump Suction Diffuser

Angle type body with removable strainer basket and internal straightening vanes, a suction pipe support, and a blowdown outlet and plug. Strainer shall be in accordance with ASTM F 1199, except as modified and supplemented by this specification. Unit body shall have arrows clearly cast on the sides indicating the direction of flow.

Strainer screen shall be made of minimum 22 gauge monel with small perforations numbering not less than 400 per square inch to provide a net free area through the basket of at least 3.30 times that of the entering pipe. Flow shall be into the screen and out through the perforations. Provide an auxiliary disposable fine mesh strainer, which shall be removed 30 days after start-up. Provide warning tag for operator indicating scheduled date for removal.

Casing shall have connection sizes to match pump suction and pipe sizes, and be provided with adjustable support foot or support foot boss to relieve piping strains at pump suction. Provide unit casing with blowdown port and plug. Provide a magnetic insert to remove debris from system.
2.4.2 Flexible Pipe Connectors

Provide flexible bronze or stainless steel piping connectors with single braid. Equip flanged assemblies with limit bolts to restrict maximum travel to the manufacturer's standard limits. Unless otherwise indicated, the length of the flexible connectors shall be as recommended by the manufacturer for the service intended. Internal sleeves or liners, compatible with circulating medium, shall be provided when recommended by the manufacturer. Provide covers to protect the bellows where indicated.

2.4.3 Pressure Gauges

Gauges, ASME B40.100 with throttling type needle valve or a pulsation dampener and shut-off valve. Provide gauges with 4.5-inch dial, brass or aluminum case, bronze tube, and siphon. Gauge shall have a minimum of with a range from 0 psig to approximately 1.5 times the maximum system working pressure. Each gauge range shall be selected so that at normal operating pressure, the needle is within the middle-third of the range.

2.4.4 Temperature Gauges

Temperature gauges, shall be the industrial duty type and be provided for the required temperature range. Provide gauges with fixed thread connection, dial face gasketed within the case; and accuracy within 2 percent of scale range. Gauges shall have Fahrenheit scale in 2-degree graduations scale (black numbers) on a white face. The pointer shall be adjustable. Rigid stem type temperature gauges shall be provided in thermal wells located within 5 feet of the finished floor. Universal adjustable angle type or remote element type temperature gauges shall be provided in thermal wells located 5 to 7 feet above the finished floor or in locations indicated. Remote element type temperature gauges shall be provided in thermal wells located 7 feet above the finished floor or in locations indicated.

2.4.4.1 Stem Cased-Glass

Stem cased-glass case shall be polished stainless steel or cast aluminum, 9 inches long, with clear acrylic lens, and non-mercury filled glass tube with indicating-fluid column.

2.4.4.2 Bimetallic Dial

Bimetallic dial type case shall be not less than 3-1/2 inches, stainless steel, and shall be hermetically sealed with clear acrylic lens. Bimetallic element shall be silicone dampened and unit fitted with external calibrator adjustment.

2.4.4.3 Liquid-, Solid-, and Vapor-Filled Dial

Liquid-, solid-, and vapor-filled dial type cases shall be not less than 3-1/2 inches, stainless steel or cast aluminum with clear acrylic lens. Fill shall be nonmercury, suitable for encountered cross-ambients, and connecting capillary tubing shall be double-braided bronze.

2.4.4.4 Thermal Well

Thermal well shall be identical size, 1/2 or 3/4-inch NPT connection, brass or stainless steel. Where test wells are indicated, provide captive plug-fitted type 1/2-inch NPT connection suitable for use with either
enlarged stem or standard separable socket thermometer or thermostat. Mercury shall not be used in thermometers. Extended neck thermal wells shall be of sufficient length to clear insulation thickness by 1 inch.

2.4.4.5 Pressure/Temperature Test Ports

A. Design

Chilled Water Service

1. Design so that condensation will not occur on exposed surfaces with indoor air at 85 degrees F and 70% R.H. (74 degrees F dew point) with 45 degrees F water flowing in piping.
2. A non-condensing design with a non-metallic plastic extension extending through the insulation.
3. A 3/4" thick factory installed insulation sleeve.

B. Construction

1. The ports shall have brass bodies with dual EPDM seals.
2. Ports shall be suitable to accept a 1/8" diameter thermometer stem or pressure gauge adapter.
3. They shall have threaded caps with internal seal and a plastic retainer strap.

C. Minimum Ratings

1. Chilled water - 400psi at 160 degrees F.
2. Hot Water - 400psi at 250 degrees F.

D. Read-out Kit

1. Provide a portable read-out kit by the manufacturer of the P/T ports.
2. The kit shall include two thermometers, a pressure gauge with two gauge adapters and silicone lubricant with all components housed in a molded plastic case.

E. Installation

1. Insulator must glue the pipe insulation sleeve on chilled water service.
2. Install pointing vertically up or in a horizontal plane. Do not have the test port pointing down.
3. Install in accordance with manufacturers' instructions.

2.4.5 Pipe Hangers, Inserts, and Supports

Design and fabrication of pipe hangers, support, and welding attachments shall conform to MSS SP-58. Hanger types and supports for bare and covered pipes shall conform to MSS SP-69 for system temperature range. Unless otherwise indicated, horizontal and vertical piping attachments shall conform to MSS SP-58. Provide metal protection shields and inserts for insulated piping in accordance with Section 15080N, "Mechanical Insulation." Sway bracing shall conform to ASME B31.9.

2.4.6 Escutcheons

Provide one piece or split hinge metal plates for piping entering floors, walls, and ceilings in exposed spaces. Secure plates in place by internal spring tension or set screws. Provide polished stainless steel plates or chromium-plated finish on copper alloy plates in finished spaces. Provide paint finish on metal plates in unfinished spaces.
2.4.7 Flow Measuring Equipment

2.4.7.1 Test Kit

A differential pressure test kit shall be supplied to verify flow and measure over-heading. The kit shall consist of a 4 1/2" diaphragm gauge equipped with ten-foot hoses and P/T adapters all housed in a vinyl case. Calibration shall be 0-35 PSID for 2 - 32 PSI spring range or 0 - 65 PSID for 5 - 60 PSI range.

2.4.8 Condensate Drains

ASTM B 88 Type M or Type L, hard drawn with ASME B16.22 fittings.

2.5 ELECTRICAL WORK

Provide motors, controllers, integral disconnects, contactors, and controls with their respective pieces of equipment, except controllers indicated as part of motor control centers. Provide electrical equipment, including motors and wiring, as specified in Section 262000 INTERIOR DISTRIBUTION SYSTEM. Manual or automatic control and protective or signal devices required for the operation specified and control wiring required for controls and devices specified, but not shown, shall be provided. For packaged equipment, the manufacturer shall provide controllers including the required monitors and timed restart.

Provide high efficiency type, single-phase, fractional-horsepower alternating-current motors, including motors that are part of a system, in accordance with NEMA MG 11.

Provide polyphase, squirrel-cage medium induction motors, including motors that are part of a system, that meet the efficiency ratings for premium efficiency motors in accordance with NEMA MG 1. Provide motors in accordance with NEMA MG 1 and of sufficient size to drive the load at the specified capacity without exceeding the nameplate rating of the motor.

Motors shall be rated for continuous duty with the enclosure specified. Motor duty requirements shall allow for maximum frequency start-stop operation and minimum encountered interval between start and stop. Motor torque shall be capable of accelerating the connected load within 20 seconds with 80 percent of the rated voltage maintained at motor terminals during one starting period. Provide motor starters complete with thermal overload protection and other necessary appurtenances. Motor bearings shall be fitted with grease supply fittings and grease relief to outside of the enclosure.

Where two-speed or variable-speed motors are indicated, solid-state variable-speed controllers may be provided to accomplish the same function. Use solid-state variable-speed controllers for motors rated 7.45 kW (10 hp) or less and adjustable frequency drives for larger motors. Provide variable frequency drives for motors as specified.

2.6 PAINTING OF NEW EQUIPMENT

New equipment painting shall be factory applied or shop applied, and shall be as specified herein, and provided under each individual section.

2.6.1 Factory Painting Systems

Manufacturer's standard factory painting systems may be provided. The
factory painting system applied will withstand 125 hours in a salt-spray fog test, except that equipment located outdoors shall withstand 500 hours in a salt-spray fog test.

Salt-spray fog test shall be in accordance with ASTM B 117, and for that test, the acceptance criteria shall be as follows: immediately after completion of the test, the paint shall show no signs of blistering, wrinkling, or cracking, and no loss of adhesion; and the specimen shall show no signs of rust creepage beyond 0.125 inch on either side of the scratch mark. The film thickness of the factory painting system applied on the equipment shall not be less than the film thickness used on the test specimen.

If manufacturer's standard factory painting system is being proposed for use on surfaces subject to temperatures above 120 degrees F, the factory painting system shall be designed for the temperature service.

2.6.2 Shop Painting Systems for Metal Surfaces

Clean, retreat, prime and paint metal surfaces; except aluminum surfaces need not be painted. Apply coatings to clean dry surfaces. Clean the surfaces to remove dust, dirt, rust, oil and grease by wire brushing and solvent degreasing prior to application of paint, except metal surfaces subject to temperatures in excess of 120 degrees F shall be cleaned to bare metal.

Where hot-dip galvanized steel has been cut, resulting surfaces with no galvanizing shall be coated with a zinc-rich coating conforming to ASTM D 520, Type I.

Where more than one coat of paint is specified, apply the second coat after the preceding coat is thoroughly dry. Lightly sand damaged painting and retouch before applying the succeeding coat. Color of finish coat shall be aluminum or light gray.

a. Temperatures Less Than 120 Degrees F: Immediately after cleaning, the metal surfaces subject to temperatures less than 120 degrees F shall receive one coat of pretreatment primer applied to a minimum dry film thickness of 0.3 mil, one coat of primer applied to a minimum dry film thickness of one mil; and two coats of enamel applied to a minimum dry film thickness of one mil per coat.

b. Temperatures Between120 and 400 degrees F: Metal surfaces subject to temperatures between120 and 400 degrees F shall receive two coats of 400 degrees F heat-resisting enamel applied to a total minimum thickness of 2 mils.

c. Temperatures Greater Than 400 degrees F: Metal surfaces subject to temperatures greater than 400 degrees F shall receive two coats of 600 degrees F heat-resisting paint applied to a total minimum dry film thickness of 2 mils.

2.7 FACTORY APPLIED INSULATION

Factory insulated items installed outdoors are not required to be fire-rated. As a minimum, factory insulated items installed indoors shall have a flame spread index no higher than 75 and a smoke developed index no higher than 150. Factory insulated items (no jacket) installed indoors and which are located in air plenums, in ceiling spaces, and in attic spaces
shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50. Flame spread and smoke developed indexes shall be determined by ASTM E 84.

Insulation shall be tested in the same density and installed thickness as the material to be used in the actual construction. Material supplied by a manufacturer with a jacket shall be tested as a composite material. Jackets, facings, and adhesives shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50 when tested in accordance with ASTM E 84.

2.8 NAMEPLATES

Major equipment including pumps, pump motors, expansion tanks, and air separator tanks shall have the manufacturer's name, type or style, model or serial number on a plate secured to the item of equipment. The nameplate of the distributing agent will not be acceptable. Plates shall be durable and legible throughout equipment life and made of anodized aluminum. Plates shall be fixed in prominent locations with nonferrous screws or bolts.

2.9 RELATED COMPONENTS/SERVICES

2.9.1 Drain Piping

Provide drain piping as indicated on the drawings.

2.9.2 Field Applied Insulation

Requirements for field applied insulation is specified in Section 230700 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

2.9.3 Field Applied Insulation

Requirements for field installed insulation is specified in Section 230700 THERMAL INSULATION FOR MECHANICAL SYSTEMS, except as supplemented and modified by this specification section.

2.9.4 Field Painting

Requirements for painting of surfaces not otherwise specified, and finish painting of items only primed at the factory, are specified in Section 09 90 00 "PAINTS and COATINGS".

2.9.4.1 Color Coding

Requirements for color coding for piping identification are specified in ASME A13.1.

PART 3 EXECUTION

3.1 INSTALLATION

Cut pipe accurately to measurements established at the jobsite, and work into place without springing or forcing, completely clearing all windows, doors, and other openings. Cutting or other weakening of the building structure to facilitate piping installation is not permitted without written approval. Cut pipe or tubing square, remove burrs by reaming, and fashion to permit free expansion and contraction without causing damage to the building structure, pipe, joints, or hangers.
Notify the Contracting Officer in writing at least 15 calendar days prior to the date the connections are required. Obtain approval before interrupting service. Furnish materials required to make connections into existing systems and perform excavating, backfilling, compacting, and other incidental labor as required. Furnish labor and tools for making actual connections to existing systems.

3.1.1 Welding

Provide welding work specified this section for piping systems in conformance with ASME B31.9, as modified and supplemented by this specification section and the accompanying drawings. The welding work includes: qualification of welding procedures, welders, welding operators, brazers, brazing operators, and nondestructive examination personnel; maintenance of welding records, and examination methods for welds.

3.1.1.1 Employer's Record Documents (For Welding)

Submit for review and approval the following documentation. This documentation and the subject qualifications shall be in compliance with ASME B31.9.

a. List of qualified welding procedures that is proposed to be used to provide the work specified in this specification section.

b. List of qualified welders, brazers, welding operators, and brazing operators that are proposed to be used to provide the work specified in this specification section.

c. List of qualified weld examination personnel that are proposed to be used to provide the work specified in this specification section.

3.1.1.2 Welding Procedures and Qualifications

a. Specifications and Test Results: Submit copies of the welding procedures specifications and procedure qualification test results for each type of welding required. Approval of any procedure does not relieve the Contractor of the responsibility for producing acceptable welds. Submit this information on the forms printed in ASME BPVC SEC IX or their equivalent.

b. Certification: Before assigning welders or welding operators to the work, submit a list of qualified welders, together with data and certification that each individual is performance qualified as specified. Do not start welding work prior to submitting welder, and welding operator qualifications. The certification shall state the type of welding and positions for which each is qualified, the code and procedure under which each is qualified, date qualified, and the firm and individual certifying the qualification tests.

3.1.1.3 Examination of Piping Welds

Conduct non-destructive examinations (NDE) on piping welds and brazing and verify the work meets the acceptance criteria specified in ASME B31.9. NDE on piping welds covered by ASME B31.9 is visual inspection only. Submit a piping welds NDE report meeting the requirements specified in ASME B31.9.
3.1.1.4 Welding Safety

Welding and cutting safety requirements shall be in accordance with AWS Z49.1.

3.1.2 Directional Changes

Make changes in direction with fittings, except that bending of pipe 4 inches and smaller is permitted, provided a pipe bender is used and wide weep bends are formed. Mitering or notching pipe or other similar construction to form elbows or tees is not permitted. The centerline radius of bends shall not be less than 6 diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations is not acceptable.

3.1.3 Functional Requirements

Pitch horizontal supply mains down in the direction of flow as indicated. The grade shall not be less than 1 inch in 40 feet. Reducing fittings shall be used for changes in pipe sizes. Cap or plug open ends of pipelines and equipment during installation to keep dirt or other foreign materials out of the system.

Pipe not otherwise specified shall be uncoated. Connections to appliances shall be made with malleable iron unions for steel pipe 2-1/2 inches or less in diameter, and with flanges for pipe 3 inches and above in diameter. Connections between ferrous and copper piping shall be electrically isolated from each other with dielectric waterways or flanges.

Piping located in air plenums shall conform to NFPA 90A requirements. Pipe and fittings installed in inaccessible conduits or trenches under concrete floor slabs shall be welded. Equipment and piping arrangements shall fit into space allotted and allow adequate acceptable clearances for installation, replacement, entry, servicing, and maintenance. Electric isolation fittings shall be provided between dissimilar metals.

3.1.4 Piping, Water Coils

A. Equipment

1. Approved shut-off valves shall be provided on the inlet and outlet of the coil. All equipment to be serviced or components with a potential leak path shall be on the coil side of these valves.
2. A Y-strainer with a 20-mesh strainer element shall be provided on the inlet side of the coil. For design flows less than 2 GPM a 40-mesh strainer shall be used. It shall have a brass hose-end drain valve with a cap and retainer strap. When piped directly to a drain line a 1/2" ball drain valve shall be used.
3. Unions shall be provided for coil and ATC valve removal.
4. Pressure/Temperature ports shall be provided on each side of the coil, the ATC valve, and the Y-strainer.
5. Manual air vent shall be installed on the inlet and outlet sides of the coil.

B. Construction

1. All equipment and components including the shut-off service valves shall be copper and/or brass construction.
2. If steel pipe is used for the run-outs a dielectric nipple
shall be used at the dissimilar metal junction.

C. Design and Ratings
1. All equipment and components shall be suitable for 250 psi and 250 degrees F operation.
2. At the coil design flow the following pressure drops shall not be exceeded (pressure drops are in feet of water column): Coil - 10', Strainer (clean) - 1', Manual-balancing valve - 2' in the case of automatic balance valves the drop shall not exceed 7'.
3. The balancing valve shall be located on the return side of the coil immediately before the service shut off valve.

D. Installation
1. All equipment and components shall be serviceable and usable.
2. All joints shall be leak tested.
3. Where applicable, factory assembled and tested combination valves and components are acceptable.
4. The hook-up coil components shall be placed in such a manner that the coil can be removed without dismantling or cutting coil hook-up piping.
5. When insulation exceeds 1", all valve handles, air vents, P/T ports and drains shall be extended an additional 1 1/2" to clear insulation. Also, all these components shall be visible and accessible. Do not insulate heating hook-up components.

3.1.5 Fittings and End Connections

3.1.5.1 Threaded Connections
Threaded connections shall be made with tapered threads and made tight with PTFE tape complying with ASTM D 3308 or equivalent thread-joint compound applied to the male threads only. Not more than three threads shall show after the joint is made.

3.1.5.2 Brazed Connections
Brazing, AWS BRH, except as modified herein. During brazing, the pipe and fittings shall be filled with a pressure-regulated inert gas, such as nitrogen, to prevent the formation of scale. Before brazing copper joints, both the outside of the tube and the inside of the fitting shall be cleaned with a wire fitting brush until the entire joint surface is bright and clean. Do not use brazing flux. Surplus brazing material shall be removed at all joints. Steel tubing joints shall be made in accordance with the manufacturer's recommendations. Piping shall be supported prior to brazing and not be sprung or forced.

3.1.5.3 Welded Connections
Branch connections shall be made with welding tees or forged welding branch outlets. Pipe shall be thoroughly cleaned of all scale and foreign matter before the piping is assembled. During welding, the pipe and fittings shall be filled with an inert gas, such as nitrogen, to prevent the formation of scale. Beveling, alignment, heat treatment, and inspection of weld shall conform to ASME B31.9. Weld defects shall be removed and rewelded at no additional cost to the Government. Electrodes shall be stored and dried in accordance with AWS D1.1/D1.1M or as recommended by the manufacturer. Electrodes that have been wetted or that have lost any of their coating shall not be used.
3.1.5.4 Grooved Mechanical Connections

Prepare grooves in accordance with the coupling manufacturer's instructions. Pipe and groove dimensions shall comply with the tolerances specified by the coupling manufacturer. The diameter of grooves made in the field shall be measured using a "go/no-go" gauge, vernier or dial caliper, or narrow-land micrometer, or other method specifically approved by the coupling manufacturer for the intended application. Groove width and dimension of groove from end of pipe shall be measured and recorded for each change in grooving tool setup to verify compliance with coupling manufacturer's tolerances. Grooved joints shall not be used in concealed locations, such as behind solid walls or ceilings, unless an access panel is shown on the drawings for servicing or adjusting the joint.

3.1.5.5 Flared Connections

When flared connections are used, a suitable lubricant shall be used between the back of the flare and the nut in order to avoid tearing the flare while tightening the nut.

3.1.5.6 Flanges and Unions

Except where copper tubing is used, union or flanged joints shall be provided in each line immediately preceding the connection to each piece of equipment or material requiring maintenance such as coils, pumps, control valves, and other similar items. Flanged joints shall be assembled square end tight with matched flanges, gaskets, and bolts. Gaskets shall be suitable for the intended application.

3.1.6 Valves

Isolation gate or ball valves shall be installed on each side of each piece of equipment, at the midpoint of all looped mains, and at any other points indicated or required for draining, isolating, or sectionalizing purpose. Isolation valves may be omitted where balancing cocks are installed to provide both balancing and isolation functions. Each valve except check valves shall be identified. Valves in horizontal lines shall be installed with stems horizontal or above.

3.1.7 Air Vents

Air vents shall be provided at all high points, on all water coils, and where indicated to ensure adequate venting of the piping system.

3.1.8 Drains

Drains shall be provided at all low points and where indicated to ensure complete drainage of the piping. Drains shall be accessible, and shall consist of nipples and caps or plugged tees unless otherwise indicated.

3.1.9 Flexible Pipe Connectors

Connectors shall be attached to components in strict accordance with the latest printed instructions of the manufacturer to ensure a vapor tight joint. Hangers, when required to suspend the connectors, shall be of the type recommended by the flexible pipe connector manufacturer and shall be provided at the intervals recommended.
3.1.10 Temperature Gauges

Temperature gauges shall be located on coolant supply and return piping at each heat exchanger, on condenser water piping entering and leaving a condenser, at each automatic temperature control device without an integral thermometer, and where indicated or required for proper operation of equipment. Thermal wells for insertion thermometers and thermostats shall extend beyond thermal insulation surface not less than 1 inch.

3.1.11 Pipe Hangers, Inserts, and Supports

Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69, except as supplemented and modified in this specification section. Pipe hanger types 5, 12, and 26 shall not be used. Hangers used to support piping 2 inches and larger shall be fabricated to permit adequate adjustment after erection while still supporting the load. Piping subjected to vertical movement, when operating temperatures exceed ambient temperatures, shall be supported by variable spring hangers and supports or by constant support hangers.

3.1.11.1 Hangers

Type 3 shall not be used on insulated piping. Type 24 may be used only on trapeze hanger systems or on fabricated frames.

3.1.11.2 Inserts

Type 18 inserts shall be secured to concrete forms before concrete is placed. Continuous inserts which allow more adjustments may be used if they otherwise meet the requirements for Type 18 inserts.

3.1.11.3 C-Clamps

Type 19 and 23 C-clamps shall be torqued per MSS SP-69 and have both locknuts and retaining devices, furnished by the manufacturer. Field-fabricated C-clamp bodies or retaining devices are not acceptable.

3.1.11.4 Angle Attachments

Type 20 attachments used on angles and channels shall be furnished with an added malleable-iron heel plate or adapter.

3.1.11.5 Saddles and Shields

Where Type 39 saddle or Type 40 shield are permitted for a particular pipe attachment application, the Type 39 saddle, connected to the pipe, shall be used on all pipe 4 inches and larger when the temperature of the medium is 60 degrees F or higher. Type 40 shields shall be used on all piping less than 4 inches and all piping 4 inches and larger carrying medium less than 60 degrees F. A high-density insulation insert of cellular glass shall be used under the Type 40 shield for piping 2 inches and larger.

3.1.11.6 Horizontal Pipe Supports

Horizontal pipe supports shall be spaced as specified in MSS SP-69 and a support shall be installed not over 1 foot from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 5 feet apart at valves. Pipe hanger loads suspended from steel joist with hanger loads between panel points in excess of 50 pounds shall have
the excess hanger loads suspended from panel points.

3.1.11.7 Vertical Pipe Supports

Vertical pipe shall be supported at each floor, except at slab-on-grade, and at intervals of not more than 15 feet, not more than 8 feet from end of risers, and at vent terminations.

3.1.11.8 Pipe Guides

Type 35 guides using steel, reinforced polytetrafluoroethylene (PTFE) or graphite slides shall be provided where required to allow longitudinal pipe movement. Lateral restraints shall be provided as required. Slide materials shall be suitable for the system operating temperatures, atmospheric conditions, and bearing loads encountered.

3.1.11.9 Steel Slides

Where steel slides do not require provisions for restraint of lateral movement, an alternate guide method may be used. On piping 4 inches and larger, a Type 39 saddle shall be used. On piping under 4 inches, a Type 40 protection shield may be attached to the pipe or insulation and freely rest on a steel slide plate.

3.1.11.10 Multiple Pipe Runs

In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support members shall not exceed the hanger and support spacing required for an individual pipe in the multiple pipe run.

3.1.11.11 Seismic Requirements

Piping and attached valves shall be supported and braced to resist seismic loads as specified under Sections 22 05 48 "MECHANICAL SOUND, VIBRATION, AND SEISMIC CONTROL". Structural steel required for reinforcement to properly support piping, headers, and equipment but not shown shall be provided under this section.

3.1.11.12 Structural Attachments

Attachment to building structure concrete and masonry shall be by cast-in concrete inserts, built-in anchors, or masonry anchor devices. Inserts and anchors shall be applied with a safety factor not less than 5. Supports shall not be attached to metal decking. Supports shall not be attached to the underside of concrete filled floors or concrete roof decks unless approved by the Contracting Officer. Masonry anchors for overhead applications shall be constructed of ferrous materials only. Structural steel brackets required to support piping, headers, and equipment, but not shown, shall be provided under this section.

3.1.12 Pipe Alignment Guides

Pipe alignment guides shall be provided where indicated for expansion loops, offsets, and bends and as recommended by the manufacturer for expansion joints, not to exceed 5 feet on each side of each expansion joint, and in lines 4 inches or smaller not more than 2 feet on each side of the joint.
3.1.13 Pipe Anchors

Anchors shall be provided where indicated. Unless indicated otherwise, anchors shall comply with the requirements specified. Anchors shall consist of heavy steel collars with lugs and bolts for clamping and attaching anchor braces, unless otherwise indicated. Anchor braces shall be installed in the most effective manner to secure the desired results using turnbuckles where required.

Supports, anchors, or stays shall not be attached where they will injure the structure or adjacent construction during installation or by the weight of expansion of the pipeline. Where pipe and conduit penetrations of vapor barrier sealed surfaces occur, these items shall be anchored immediately adjacent to each penetrated surface, to provide essentially zero movement within penetration seal.

3.1.14 Building Surface Penetrations

Sleeves shall not be installed in structural members except where indicated or approved. Except as indicated otherwise piping sleeves shall comply with requirements specified. Sleeves in nonload bearing surfaces shall be galvanized sheet metal, conforming to ASTM A 653/A 653M, Coating Class G-90, 20 gauge. Sleeves in load bearing surfaces shall be uncoated carbon steel pipe, conforming to ASTM A 53/A 53M, Standard weight. Sealants shall be applied to moisture and oil-free surfaces and elastomers to not less than 1/2-inch depth. Sleeves shall not be installed in structural members.

3.1.14.1 General Service Areas

Each sleeve shall extend through its respective wall, floor, or roof, and shall be cut flush with each surface. Pipes passing through concrete or masonry wall or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of construction. Sleeves shall be of such size as to provide a minimum of 1/4 inch all-around clearance between bare pipe and sleeves or between jacketed-insulation and sleeves. Except in pipe chases or interior walls, the annular space between pipe and sleeve or between jacket over-insulation and sleeve shall be sealed in accordance with Section 079200 JOINT SEALANTS.

3.1.14.2 Waterproof Penetrations

Pipes passing through roof or floor waterproofing membrane shall be installed through a .17 ounce copper sleeve, or a 0.032 inch thick aluminum sleeve, each within an integral skirt or flange.

Flashing sleeve shall be suitably formed, and skirt or flange shall extend not less than 8 inches from the pipe and be set over the roof or floor membrane in a troweled coating of bituminous cement. The flashing sleeve shall extend up the pipe a minimum of 2 inches above the roof or floor penetration. The annular space between the flashing sleeve and the bare pipe or between the flashing sleeve and the metal-jacket-covered insulation shall be sealed as indicated. Penetrations shall be sealed by either one of the following methods.

a. Waterproofing Clamping Flange: Pipes up to and including 10 inches in diameter passing through roof or floor waterproofing membrane may be installed through a cast iron sleeve with caulking recess, anchor lugs, flashing clamp device, and pressure ring with brass bolts. Waterproofing membrane shall be clamped into place and sealant shall be
placed in the caulking recess.

b. Modular Mechanical Type Sealing Assembly: In lieu of a waterproofing clamping flange, a modular mechanical type sealing assembly may be installed. Seals shall consist of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe/conduit and sleeve with corrosion protected carbon steel bolts, nuts, and pressure plates. Links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut.

After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal rubber sealing elements to expand and provide a watertight seal between the pipe/conduit seal between the pipe/conduit and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe/conduit and sleeve involved. The Contractor electing to use the modular mechanical type seals shall provide sleeves of the proper diameters.

3.1.14.3 Fire-Rated Penetrations

Penetration of fire-rated walls, partitions, and floors shall be sealed as specified in Section 078413 PENETRATION FIRESTOPPING.

3.1.14.4 Escutcheons

Finished surfaces where exposed piping, bare or insulated, pass through floors, walls, or ceilings, except in boiler, utility, or equipment rooms, shall be provided with escutcheons. Where sleeves project slightly from floors, special deep-type escutcheons shall be used. Escutcheon shall be secured to pipe or pipe covering.

3.1.15 Access Panels

Access panels shall be provided where indicated for all concealed valves, vents, controls, and additionally for items requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced and maintained or completely removed and replaced.

3.1.16 Instrumentation

Locate gages and thermometers as indicated.

a. Pressure and vacuum gage: Provide a shutoff valve or pet cock between pressure gages and pipe line.

b. Thermometers: Provide thermometers and thermal sensing elements of control valves with a separate socket. Install separable sockets in pipe lines in such a manner to sense temperature of flowing fluid and minimize obstruction to flow.

3.2 ELECTRICAL INSTALLATION

Install electrical equipment in accordance with NFPA 70 and manufacturers instructions.
3.3 CLEANING AND ADJUSTING

Pipes shall be cleaned free of scale and thoroughly flushed of all foreign matter. A temporary bypass shall be provided for all water coils to prevent flushing water from passing through coils. Strainers and valves shall be thoroughly cleaned. Prior to testing and balancing, air shall be removed from all water systems by operating the air vents. Temporary measures, such as piping the overflow from vents to a collecting vessel shall be taken to avoid water damage during the venting process. Air vents shall be plugged or capped after the system has been vented. Control valves and other miscellaneous equipment requiring adjustment shall be adjusted to setting indicated or directed.

3.4 FIELD TESTS

Field tests shall be conducted in the presence of the QC Manager or his designated representative to verify systems compliance with specifications. Any material, equipment, instruments, and personnel required for the test shall be provided by the Contractor.

3.4.1 Equipment and Component Isolation

Prior to testing, equipment and components that cannot withstand the tests shall be properly isolated.

3.4.2 Pressure Tests

Each piping system shall be hydrostatically tested at a pressure not less than 188 psig for period of time sufficient to inspect every joint in the system and in no case less than 2 hours. Test pressure shall be monitored by a currently calibrated test pressure gauge. Leaks shall be repaired and piping retested until test requirements are met. No leakage or reduction in gage pressure shall be allowed.

Leaks shall be repaired by rewelding or replacing pipe or fittings. Caulking of joints will not be permitted. Concealed and insulated piping shall be tested in place before concealing.

Submit for approval pressure tests reports covering the above specified piping pressure tests; describe the systems tested, test results, defects found and repaired, and signature of the pressure tests' director. Obtain approval from the QC Manager before concealing piping or applying insulation to tested and accepted piping.

3.4.3 Related Field Inspections and Testing

3.4.3.1 Piping Welds

Examination of Piping Welds is specified in the paragraph above entitled "Examination of Piping Welds".

3.4.3.2 HVAC TAB

Requirements for testing, adjusting, and balancing (TAB) of HVAC water piping, and associated equipment is specified in Section 230800 HVAC TESTING/ADJUSTING/BALANCING. Coordinate with the TAB team, and provide support personnel and equipment as specified in Section 230800 HVAC TESTING/ADJUSTING/BALANCING to assist TAB team to meet the TAB work requirements.
3.5 INSTRUCTION TO GOVERNMENT PERSONNEL

Furnish the services of competent instructors to give full instruction to the designated Government personnel in the adjustment, operation, and maintenance, including pertinent safety requirements, of the chilled-hot water, and condenser water piping systems. Instructors shall be thoroughly familiar with all parts of the installation and shall be instructed in operating theory as well as practical operation and maintenance work. Submit a lesson plan for the instruction course for approval. The lesson plan and instruction course shall be based on the approved operation and maintenance data and maintenance manuals.

Conduct a training course for the operating staff and maintenance staff selected by the Contracting Officer. Give the instruction during the first regular work week after the equipment or system has been accepted and turned over to the Government for regular operation. Use approximately half of the time for classroom instruction and the other time for instruction at the location of equipment or system.

When significant changes or modifications in the equipment or system are made under the terms of the contract, provide additional instruction to acquaint the operating personnel with the changes or modifications.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)

AMCA 500-D (1998) Laboratory Methods of Testing Dampers for Rating

ASTM INTERNATIONAL (ASTM)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 90B (2008) Installation of Warm Air Heating and Air Conditioning Systems

1.2 QUALITY ASSURANCE

A. Air Coils: Certify capacities, pressure drops and selection procedures in accordance with current ARI 410 Standard.

B. Certify air-handling units in accordance with ARI 430.

C. ISO 9001 Certification.

1.3 SUBMITTALS

A. Submit unit performance including: capacity, nominal and operating performance.

B. Submit Mechanical Specifications for unit and accessories describing construction, components and options.

C. Submit shop drawings indicating overall dimensions as well as installation, operation and service clearances. Indicate lift points and recommendations. Indicate unit shipping split locations, and split dimensions, installation and operating weights including dimensions.

D. Provide fan curves with specified operating point clearly plotted.

E. Submit data on electrical requirements. Include safety and start-up instructions.
F. Submit sound data certified to ARI 260.

1.4 REGULATORY REQUIREMENTS

Unit shall be manufactured to conform to UL 1995 Standard and shall be listed by either UL/CUL or ETL. Units shall be provided with listing agency label affixed to unit. In the event the unit is not UL/CUL or ETL approved, the contractor shall, at his/her expense provide for a field inspection by a UL/CUL or ETL representative to verify conformance. If necessary, contractor shall perform modifications to the unit to comply with UL/CUL or ETL as directed by the representative, at no additional expense to the owner.

Certify air-handling units in accordance with ARI 430. If air-handling units are not certified in accordance with ARI 430, contractor shall be responsible for expenses associated with testing of units after installation to verify performance of fan(s). Any costs incurred to adjust fans to meet scheduled capacities shall be the sole responsibility of the contractor.

Certify air-handling coils in accordance with ARI 410. If air-handling coils are not certified in accordance with ARI 410, contractor shall be responsible for expenses associated with testing of coils after installation to verify performance of coil(s). Any costs incurred to adjust coils to meet scheduled capacities shall be the sole responsibility of the contractor.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Comply with manufacturer's installation instructions for rigging, unloading, and transporting units.

B. Units shall ship fully assembled up to practical shipping and rigging limitations. Units not shipped fully assembled shall have tags and airflow arrows on each section to indicate location and orientation in direction of airflow. Shipping splits shall be clearly defined on submittal drawings. Cost associated with non-conformance to shop drawings shall be the responsibility of the manufacturer. Each section shall have lifting lugs or shipping skid to allow for field rigging and final placement of section.

C. Deliver units to jobsite with fan motor(s), sheave(s), and belt(s) completely assembled and mounted in units.

D. Store in clean dry place and protect from weather and construction traffic. Handle carefully to avoid damage to components, enclosures, and finish.

1.6 START-UP AND OPERATING REQUIREMENTS

Do not operate units for any purpose, temporary or permanent, until ductwork is clean, filters in place, bearings lubricated (if applicable), condensate properly trapped, piping connections verified and leak-tested, belts aligned and tensioned, all shipping braces removed, bearing set screws torqued, and fan has been test run under observation.
1.7 WARRANTY

The equipment manufacturer shall provide, at no additional cost, a standard parts warranty that covers a period of one year from unit start-up or 18 months from shipment, whichever occurs first. This warrants that all products are free from defects in material and workmanship and shall meet the capacities and ratings set forth in the equipment manufacturer’s catalog and bulletins.

PART 2 PRODUCTS

2.1 GENERAL

Unit layout and configuration shall be as defined in project plans and schedule.

Provide factory-installed external support kit on the base of the unit. External support kit shall be used for ceiling suspension, external isolation, or with housekeeping pad. Contractor will be responsible for providing a housekeeping pad when unit mounting device is not of sufficient height to properly trap unit. Unit mounting devices not constructed of galvanized steel shall be chemically cleaned and coated with both a rust-inhibiting primer and finished coat of rust-inhibiting enamel.

2.2 UNIT CASING

A. Unit shall be constructed of a complete structural frame with removable panels. Unit manufacturer shall ship separate segments so unit can be broken down for ease of installation in tight spaces. The entire air handler shall be constructed of galvanized steel. Casing finished to meet ASTM B 117 250-hour salt-spray test. The removal of side panels shall not affect the structural integrity of the unit. All removable panels shall be gasketed to minimize air leakage. All doors shall have gasketing around full perimeter to prevent air leakage. Contractor shall be responsible to provide connection flanges and all other framework that is needed to properly support the unit.

B. Construct casing sections capable of operating from -4"wg to +6"wg.

C. Access panels and/or access doors shall be available on both sides of the unit in all sections to allow easy access to drain pan, coil(s), motor, drive components and bearings for cleaning, inspection, and maintenance. If panels are not removable, then manufacturer shall provide access sections with doors between all internal components to ensure access and cleanability of the air handler.

D. Access doors shall be double wall construction to prevent damage to insulation during routine maintenance.

E. Access panels and doors shall be fully removable without the use of specialized tools to allow complete access of all interior surfaces.

F. Door hardware shall be surface mounted to minimize penetrations in the door casing that could lead to air leakage paths.

G. All joints between exterior panels and structural frames, as well as joints between module frames, shall be properly sealed and gasketed.
to provide an air seal.

H. Insulation - High density - Insulation shall be encased in double-wall casing between exterior and interior double wall panel such that no insulation can erode to the airstream. Foil facing on insulation is not an acceptable alternate to double wall construction. Insulation shall have a minimum R-Value of 8 and shall be UL listed. The installation shall comply with NFPA 90A and NFPA 90B requirements.

I. Unit casing panels shall be 2" double-wall construction, with solid galvanized exterior and solid galvanized interior, to facilitate cleaning of unit interior.

J. Unit casing panels (roof, walls, floor) and external structural frame members shall be completely insulated filling the entire panel cavity in all directions so that no voids exist. Panel insulation shall comply with NFPA 90A.

K. Door handles shall be provided for each latching point of the door necessary to maintain the specified air leakage integrity of the unit.

2.3 FANS

A. Provide fans of type and class as specified on the schedule. Fan shafts shall be solid, coated with a rust-inhibiting coating, and properly designed so that fan shaft does not pass through first critical speed as unit comes up to rated RPM. All fans shall be statically and dynamically tested by the manufacturer for vibration and alignment as an assembly at the operating RPM to meet design specifications. If fans are not factory-tested for vibration and alignment, the contractor shall be responsible for cost and labor associated with field balancing and certified vibration performance. Fan wheels shall be keyed to fan shafts to prevent slipping.

B. Provide grease lubricated ball bearings selected for L-50 200,000-hour average life per ANSI/AFBMA 9. Greaseable bearings shall have lubrication lines extended to the drive side of the unit. Lubrication lines shall be a clear, high-pressure, polymer to aid in visual inspection. Extend both grease lubrication lines to drive side of unit and rigidly attach to drive side bearing support with zerk fittings. If extended lubrication lines are not provided, manufacturer shall provide permanently lubricated bearing with engineering calculations for proof of bearing life.

C. Fans shall be mounted on isolation bases. Internally-mounted motor shall be on the same isolation base. Fan and motor shall be internally isolated with seismic rated 2" spring isolators. Flexible canvas ducts shall be installed between fan and unit casing to ensure complete isolation. Flexible canvas ducts shall comply with NFPA 90A and UL 181 requirements. If fans and motors are not internally isolated, then the entire unit shall be externally isolated from the building, including supply and return duct work, piping, and electrical connections. External isolation shall be furnished by the contractor in order to avoid transmission of noise and vibration through the ductwork and building structure.

D. Fan modules shall have a minimum of one access door located on the drive side of the unit to allow inspection and maintenance of the fan, motor, and drive components. Construct door(s) per paragraph 2.2 - D,
E, and F.

E. Belts shall be enclosed as required by OSHA standard 29 CFR 1910 to protect worker from accidental contact with the belts and sheaves.

F. MOTORS AND DRIVES

1. All motors and drives shall be factory-installed and run tested. All motors shall be installed on a slide base to permit adjustment of belt tension. Slide base shall be designed to accept all motor sizes offered by the air-handler manufacturer for that fan size to allow a motor change in the future, should airflow requirements change. Fan sections without factory-installed motors shall have motors field installed by the contractor. The contractor shall be responsible for all costs associated with installation of motor and drive, alignment of sheaves and belts, run testing of the motor, and balancing of the assembly.

2. Motors shall be selected to operate continuously at 104 F (40 C) ambient without tripping of overloads. Motors shall have a +/- 10 percent voltage utilization range to protect against voltage variation. Motors shall be in compliance with EPACT efficiency requirements.

3. Manufacturer shall provide for each fan a nameplate with the following information to assist air balance contractor in start up and service personnel in maintenance:
 a. Fan and motor sheave part number
 b. Fan and motor bushing part number
 c. Number of belts and belt part numbers
 d. Fan design RPM and motor HP
 e. Belt tension and deflection
 f. Center distance between shafts

4. V-Belt Drive shall be variable pitch rated at 1.2 times the motor nameplate. Drives 20 hp and larger or any drives on units equipped with VFDs shall be fixed pitch.

2.4 COILS

A. Install coils such that headers and return bends are enclosed by unit casing to ensure that if condensate forms on the header or return bends, it is captured by the drainpan under the coil.

B. Coils shall be manufactured with plate fins to minimize water carryover and maximize airside thermal efficiency. Pin tube holes shall have drawn and belled collars to maintain consistent fin spacing to ensure performance and air pressure drop across the coil as scheduled. Tubes shall be mechanically expanded and bonded to fin collars for maximum thermal conductivity. Use of soldering or tinning during the fin-to-tube bonding process is not acceptable due to the inherent thermal stress and possible loss of bonding at that joint.

C. All coils shall be completely cleaned prior to installation into the air handling unit. Complete fin bundle in direction of airflow shall be degreased and steam cleaned to remove any lubricants used in the manufacturing of the fins, or dirt that may have accumulated, in order to minimize the chance for water carryover.
D. On stacked cooling coils, intermediate drain pans shall be installed between the coils. Intermediate drain pans shall have drop tubes to guide condensate to the main drain pan, thus preventing flooding of lower coils that would result in moisture carryover.

E. Hydronic Coils

1. Supply and return header connections shall be clearly labeled on outside of units such that direction of coil water-flow is counter to direction of unit air-flow.

2. Coils shall be proof tested to 300 psig and leak tested to 200 psig air pressure under water.

3. Headers shall be constructed of round copper pipe or cast iron.

4. Tubes shall be 1/2 inch O.D., minimum copper. Fins shall be aluminum. See schedule for other fin types or special coatings required.

F. Coils section side panels shall be removable to allow for removal and replacement of coils without impacting the structural integrity of the unit.

2.5 BASE-LEVEL DRAIN PANS

A. Insulation shall be encased between exterior and interior walls. Units with cooling coils shall have drain pans under complete cooling coil section that extend beyond the air-leaving side of the coil to ensure capture of all condensate in section. Cooling coil drain pans shall be sloped in 2 planes, pitched toward drain connections to ensure complete condensate drainage when unit is installed level and trapped per manufacturer's requirements. See paragraph 2.4, item D for specifications on intermediate drain pans between cooling coils.

B. Units with heating coils shall have a drain pan under complete heating coil section sloped in 2 planes and pitched toward drain connections to ensure proper drainage during cleaning and to capture water in the event of a coil failure.

C. All drain pan connections supplied by unit manufacturer including, piping, and piping connections extending from stainless steel drain pans shall be constructed of stainless steel. The contractor is responsible to ensure the unit is installed level, trapped in accordance with the manufacturer's requirements, and visually inspected to ensure proper drainage of condensate.

D. Flat drain pans shall be acceptable in sections that may have incidental, but not continuous contact with moisture. Flat drainpans shall be accessible for cleaning.

2.6 FILTERS

A. Provide factory-fabricated filter section of the same construction and finish as unit casings. Filter section shall have filter guides and access door(s) extending the full height of the casing to facilitate filter removal. Construct doors in accordance with Paragraph 2.2, items D, E, and F. Provide filter blockoffs as required to prevent air bypass around filters.
B. Filter type, efficiency, and arrangement shall be provided as defined in project plans and schedule. Filters shall be removable from side shown on drawings.

C. Manufacturer shall provide one set of startup filters.

2.7 DAMPERS

A. All dampers, with the exception of external bypass and multizones (if scheduled), shall be internally mounted. Dampers shall be premium ultra low leak and located as scheduled. Dampers shall be Ruskin CD60 double-skin airfoil design or equivalent for minimal air leakage and pressure drop. Leakage rate shall not exceed 5 CFM/square foot at one inch water gauge and 9 CFM/square foot at 4 inches water gauge. All leakage testing and pressure ratings shall be based on AMCA 500-D. Manufacturer shall submit brand and model of damper(s) being furnished.

2.8 ACCESS SECTIONS

A. Access for inspection and cleaning of the unit drain pan, coils and fans sections shall be provided. The unit shall be installed for proper access. Procedure for proper access, inspection and cleaning of the unit shall be included in the maintenance manual. Access section shall have double wall, hinged, removable access doors on side shown on drawings sides of sections. Construct doors per Paragraph 2.2 items D, E, and F.

B. To facilitate inspection of internal components, provide sealed tempered glass view windows in access doors as specified on schedule.

2.9 GENERAL UNIT SECTIONS

A. ENERGY WHEEL SECTION

1. The air-handling unit shall have a total energy wheel sized per the ventilation requirement as defined on the schedule. The energy wheel shall be an integral part of the air-handling unit. Unit shall be installed as a complete system with no additional outside air unit, or other field assembled and ducted energy recovery device. Manufacturer shall include performance information in the submittal that meets or exceeds scheduled wheel performance.

2. Energy wheel shall be sized to handle minimum OA ventilation requirement as defined on schedule. Energy wheel shall be capable of 100% economizing. Wheel section shall include return, exhaust and mixed air dampers as required for specified sequence of operation. On mixed air units, the return damper shall be an integral part of the energy wheel section and shall be sized for adequate mixed air control.

3. The air-handling unit shall be certified by ARI to contain a rotary energy recovery wheel that is ARI 1060 certified. The air-handling unit nameplate shall bear the ARI 1060 certification label. Performance characteristics of the energy wheel shall be provided as defined by ARI 1060. The energy wheel shall be an enthalpy wheel capable of sensible and latent heat transfer. Sensible, latent and total net effectiveness of the wheel.
performance shall meet or exceed performance as defined on schedule. The calculated total net effectiveness of the recovery device shall not be less than 70 percent when the specified ventilation flow rate equals the exhaust flow rate. Wheel face velocity and pressure drop shall not exceed performance as defined on schedule. The energy recovery cassette shall be an Underwriters Laboratories (UL) Recognized Component certified for mechanical, electrical, and fire safety in accordance with UL Standard 1812.

5. The energy recovery component shall incorporate a rotary wheel in an insulated cassette frame complete with seals, drive motor, and drive belts. The total energy recovery wheel shall incorporate a desiccant without the use of binders or adhesives, which may plug the desiccant aperture. The rim shall be continuous rolled stainless steel to form an even concentric circle to prevent leakage around the rim and to minimize wear of components. All diameter and perimeter seals shall be provided as part of the cassette assembly. Perimeter seals shall be self-adjusting; diameter seals shall be adjustable. Seals shall be factory set. Wheel bearings shall be permanently sealed and lubricated and have a minimum L-10 life of 400,000 hours.

6. The wheel drive motor shall be provided, mounted in the cassette frame and supplied with a connector for field service. The wheel drive motor shall be thermally protected and UL Component Recognized. On units that require drive belt tensioners for the wheel belt/motor assembly, the wheel manufacturer shall provide at no additional charge to the customer a visual inspection every four months, and adjustment if necessary, of the recommended belt tension during the unit warranty period. The wheel drive motor shall be no greater than 0.33 hp and shall be the same voltage as the airhandler fan motors.

7. Energy recovery media for wheels larger than 25 inches in diameter shall be provided in the form of removable segments. The segments shall be removable without the use of tools to facilitate maintenance and cleaning as required. Coated segments shall be washable using standard detergent or alkaline-based coil cleaners. The desiccant shall not dissolve in the presence of water or high humidity.

8. Access doors shall be provided on all air entering and air leaving sides of wheel to allow for wheel maintenance, belt or motor removal.

PART 3 EXECUTION

3.1 FIELD EXAMINATION

A. The Contractor shall verify that the mechanical room is ready to receive work.
B. The Contractor shall verify that the proper power supply is available prior to starting of the fans.

3.2 INSTALLATION

A. The Contractor shall be responsible to coordinate ALL of his installation requirements with all trades to ensure that a complete installation for each unit is being provided. Coordination efforts shall include such items as unloading and hoisting requirements, field
wiring requirements, field piping requirements, field ductwork requirements, requirements for assembly of field-bolted or -welded joints, and all other installation and assembly requirements.

B. The AHU manufacturer shall provide all screws and gaskets for joining of sections in the field.

C. The Contractor shall verify that the following items have been completed prior to scheduling the AHU manufacturer's final inspection and start up:

1. All spring-isolated components have had their shipping restraints removed and the components have been leveled.
2. On all field-joined units, that all interconnections have been completed, i.e., electrical and control wiring, piping, casing joints, bolting, welding, etc.
3. All piping connections have been completed and hydrostatically tested and all water flow rates have been set in accordance with the capacities scheduled on the Drawings.
4. All ductwork connections have been completed and all ductwork has been pressure tested for its intended service.
5. All power wiring, including motor starters and disconnects, serving the unit has been completed.
6. All automatic temperature and safety controls have been completed.
7. All dampers are fully operational.
8. All shipping materials have been removed.
9. All (clean) filter media has been installed in the units.

3.3 LEVELING

A. The Contractor shall level all unit sections in accordance with the unit manufacturer's instructions. The Contractor shall provide and install all necessary permanent shim material to ensure individual sections and entire assembled units are level.

3.4 FINAL INSPECTION AND STARTUP SERVICE

A. After the Contractor has provided all piping connections, ductwork connections, and field control wiring, and all the field power wiring, the Contractor shall inspect the installation and shall then perform startup of the equipment. The contractor shall perform all tests and services as recommended by the manufacturer and shall submit a report outlining the results.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR-CONDITIONING AND REFRIGERATION INSTITUTE (ARI)

ARI DCUP (Online) Directory of Certified Unitary Products

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

AMERICAN WELDING SOCIETY (AWS)

AWS A5.8/A5.8M (2004; Errata 2004) Specification for Filler Metals for Brazing and Braze Welding

ASME INTERNATIONAL (ASME)

ASME B16.22 (2001; R 2005) Standard for Wrought Copper and Copper Alloy Solder Joint Pressure Fittings

ASTM INTERNATIONAL (ASTM)

ASTM B 117 (2007) Standing Practice for Operating
Salt Spray (Fog) Apparatus

ASTM D 1654 (2005) Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-69 (2003; R 2004) Standard for Pipe Hangers and Supports - Selection and Application

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA ICS 1 (2000; R 2005) Standard for Industrial Control and Systems General Requirements

NEMA ICS 6 (1993; R 2006) Standard for Industrial Controls and Systems Enclosures

NEMA MG 1 (2007) Standard for Motors and Generators

U.S. DEPARTMENT OF DEFENSE (DOD)

MIL-DTL-5541 (Rev F) Chemical Conversion Coatings on Aluminum and Aluminum Alloys

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

1.2 DEFINITION

a. Year 2000 compliant - means computer controlled facility components that accurately process date and time data (including, but not limited to, calculating, comparing, and sequencing) from, into, and between the twentieth and twenty-first centuries, and the years 1999 and 2000 and leap year calculations.

1.3 RELATED REQUIREMENTS

Section 23 03 00.00 20 BASIC MECHANICAL MATERIALS AND METHODS, applies to this section with the additions and modifications specified herein.

1.4 SUBMITTALS

The following shall be submitted:

Shop Drawings

Field-assembled refrigerant piping

Control system wiring diagrams

Product Data

Heat pumps, air to air

Submit documentation for Energy Star qualifications or meeting FEMP requirements. Indicate Energy Efficiency Rating.

Filters;

Thermostats

Refrigerant piping and accessories

Coatings for finned tube coils

Energy Recovery Ventilators

Test Reports
Salt-spray tests
Start-up and initial operational tests

Manufacturer's Instructions
Heat pumps, air to air
Filters
Thermostats
Refrigerant piping and accessories
Energy Recovery Ventilators

Operation and Maintenance Data
Heat pumps
Filters
Thermostats
Energy Recovery Ventilators

Submit in accordance with Section 01 78 23 OPERATION AND MAINTENANCE DATA.

Closeout Submittals

Posted operating instructions

1.5 QUALITY ASSURANCE

1.5.1 Modification of References

Accomplish work in accordance with the referenced publications, except as modified by this section. Consider the advisory or recommended provisions to be mandatory, as though the word "shall" had been substituted for the words "should" or "could" or "may," wherever they appear. Interpret reference to "the Authority having jurisdiction," "the Administrative Authority," "the Owner," or "the Design Engineer" to mean the Contracting Officer.

1.5.2 Detail Drawing

For refrigerant piping, submit piping, including pipe sizes. Submit control system wiring diagrams.

1.5.3 Safety

Design, manufacture, and installation of unitary air conditioning equipment shall conform to ASHRAE 15.

1.5.4 Posted Operating Instructions

Submit posted operating instructions for each packaged air conditioning
1.5.5 Sizing

Size equipment based on Design Manual CS from the Air Conditioning Contractors of America; do not oversize.

1.6 REFRIGERANTS

Refrigerants shall be R-410a.

1.7 ENVIRONMENTAL REQUIREMENTS

For proper Indoor Environmental Quality, maintain positive pressure within the building. Ventilation shall meet or exceed ASHRAE 62.1 and all published addenda. Meet or exceed filter media efficiency as tested in accordance with ASHRAE 52.2. Thermal comfort shall meet or exceed ASHRAE 55.

PART 2 PRODUCTS

2.1 HEAT PUMPS, AIR TO AIR

FS A-A-50502, except as modified in this article. List units with capacities smaller than 135,000 Btu/hr in the ARI DCUP; in lieu of listing in the ARI Directory, a letter of certification from ARI that the units have been certified and will be listed in the next Directory will be acceptable. Provide factory assembled units complete with accessories, wiring, piping, and controls. Provide units with supplemental electric heaters and air filters as specified in the paragraph entitled "Filters."

2.1.1 Energy Performance

Heat pumps shall have a minimum seasonal energy efficiency ratio (SEER) as indicated.

2.1.2 Air Coils

Extended-surface fin and tube type with seamless copper or aluminum tubes with copper or aluminum fins securely bonded to the tubes. On coils with all-aluminum construction, provide tubes of aluminum alloy 1100, 1200, or 3102; provide fins of aluminum alloy 7072; and provide tube sheets of aluminum alloy 7072 or 5052. Provide a coating on outdoor air coils as specified in the paragraph entitled "Coatings for Finned Tube Coils." Coils to be coated shall be part of manufacturer's standard product for capacities and ratings indicated and specified. Provide plate type fins.

2.1.3 Supplemental Electric Heaters

Provide electrical resistance heaters integral with the unit. Heaters shall have a total capacity as indicated. Provide internal fusing for heaters.

2.1.4 Compressors

Provide compressors with devices to prevent short cycling when shutdown by safety controls. Provide reciprocating compressors with crankcase heaters, and vibration isolators.
2.1.5 Mounting Provisions

Provide units that permit mounting as indicated.

2.1.6 Temperature and Humidity Controls

Provide controls as specified in *FS A-A-50502*, as modified herein, and as indicated. Provide indoor thermostats of the programmable type that conform to applicable requirements of UL 873. Provide manual means for temperature set-back. Provide thermostats capable of controlling supplemental heat as specified in *FS A-A-50502*. Provide a manual selector switch or other means to permit the supplementary heater to be energized when the heat pump compressor and associated equipment are inoperative. Control supplementary heater with the room thermostat while bypassing the outdoor thermostat. Locate switch adjacent to or as an integral part of the room thermostat. An indicator light on the room thermostat or manual heat switch shall indicate when supplementary heaters are operating. Provide humidify/dehumidify (thermidistat control) as indicated in Sequence of Operation on drawings.

2.1.7 Accessories

In addition to accessories specified in *FS A-A-50502*, provide the following accessories for heat pump units.

a. Protective grille around outside unit coils

b. Start capacitor kit

2.2 FILTERS

Provide filters to filter outside air and return air and locate inside filter box. Provide replaceable (throw-away) type. Filters shall conform to UL 900, Class 1 or Class 2.

2.2.1 Replaceable Type Filters

ASTM F 1040 throw-away frames and media, standard dust holding capacity, 350 fpm maximum face velocity, and one inch thick. Filters shall have a minimum efficiency reporting value (MERV) of 10 when tested in accordance with *ASHRAE 52.2*.

2.3 Hepa Filter

Provide HEPA Filter for "operating room" final filter (HP!) complete with housing and access door.

2.4 COATINGS FOR FINNED TUBE COILS

Where stipulated in equipment specifications of this section, coat finned tube coils of the affected equipment as specified below. Apply coating at the premises of a company specializing in such work. Degrease and prepare for coating in accordance with the coating applicator's procedures for the type of metals involved. Completed coating shall show no evidence of softening, blistering, cracking, crazing, flaking, loss of adhesion, or "bridging" between the fins.
2.4.1 Phenolic Coating

Provide a resin base thermosetting phenolic coating. Apply coating by immersion dipping of the entire coil. Provide a minimum of two coats. Bake or heat dry coils following immersions. After final immersion and prior to final baking, spray entire coil with particular emphasis given to building up coating on sheared edges. Total dry film thickness shall be 2.5 to 3.0 mils.

2.4.2 Chemical Conversion Coating with Polyelastomer Finish Coat

Dip coils in a chemical conversion solution to molecularly deposit a corrosion resistant coating by electrolysis action. Chemical conversion coatings shall conform to MIL-DTL-5541, Class 1A. Cure conversion coating at a temperature of 110 to 140 degrees F for a minimum of 3 hours. Coat coil surfaces with a complex polymer primer with a dry film thickness of 1 mil. Cure primer coat for a minimum of 1 hour. Using dip tank method, provide three coats of a complex polyelastomer finish coat. After each of the first two finish coats, cure the coils for 1 hour. Following the third coat, spray a fog coat of an inert sealer on the coil surfaces. Total dry film thickness shall be 2.5 to 3.0 mils. Cure finish coat for a minimum of 3 hours. Coating materials shall have 300 percent flexibility, operate in temperatures of minus 50 to plus 220 degrees F, and protect against atmospheres of a pH range of 1 to 14.

2.5 MOTORS AND STARTERS

NEMA MG 1, NEMA ICS 1, and NEMA ICS 2. Motors less than 1 hp shall meet NEMA High Efficiency requirements. Motors 1 hp and larger shall meet NEMA Premium Efficiency requirements. Determine specific motor characteristics to ensure provision of correctly sized starters and overload heaters. Provide motors to operate at full capacity with a voltage variation of plus or minus 10 percent of the motor voltage rating. Motor size shall be sufficient for the duty to be performed and shall not exceed its full load nameplate current rating when driven equipment is operated at specified capacity under the most severe conditions likely to be encountered. When motor size provided differs from size indicated or specified, the Contractor shall make the necessary adjustments to the wiring, disconnect devices, and branch circuit protection to accommodate equipment actually provided. Provide general-purpose type starter enclosures in accordance with NEMA ICS 6.

2.6 REFRIGERANT PIPING AND ACCESSORIES

Provide accessories as specified in FS A-A-50502 and this section. Provide suction line accumulators as recommended by equipment manufacturer's installation instructions. Provide a filter-drier in the liquid line.

2.6.1 Factory Charged Tubing

Provide extra soft, deoxidized, bright annealed copper tubing conforming to ASTM B 280, factory dehydrated and furnished with a balanced charge of refrigerant recommended by manufacturer of equipment being connected. Factory insulate suction line tubing with 3/8 inch minimum thickness of closed cell, foamed plastic conforming to ASTM C 534 with a permeance rating not to exceed 1.0. Provide quick-connectors with caps or plugs to protect couplings. Include couplings for suction and liquid line connections of the indoor and outdoor sections.
2.6.2 Field-Assembled Refrigerant Piping

Material and dimensional requirements for field-assembled refrigerant piping, valves, fittings, and accessories shall conform to ASHRAE 15 and ASME B31.5, except as herein specified. Factory clean, dehydrate, and seal piping before delivery to the project location. Provide seamless copper tubing, hard drawn, Type K or L, conforming to ASTM B 88, except that tubing with outside diameters of 1/4 inch and 3/8 inch shall have nominal wall thickness of not less than 0.030 inch and 0.032 inch, respectively. Soft annealed copper tubing conforming to ASTM B 280 may be used where flare connections to equipment are required only in nominal sizes less than one inch outside diameter.

2.6.3 Fittings

2.6.4 Brazing Filler Material

AWS A5.8/A5.8M.

2.6.5 Pipe Hangers and Supports

MSS SP-69 and MSS SP-58.

2.6.6 Pipe Sleeves

Provide sleeves where piping passes through walls, floors, roofs, and partitions. Secure sleeves in proper position and location during construction. Provide sleeves of sufficient length to pass through entire thickness of walls, floors, roofs, and partitions. Provide not less than 0.25 inch space between exterior of piping or pipe insulation and interior of sleeve. Firmly pack space with insulation and caulk at both ends of the sleeve with plastic waterproof cement which will dry to a firm but pliable mass, or provide a segmented elastomeric seal.

2.6.6.1 Sleeves in Masonry and Concrete Walls, Floors, and Roofs

Provide Schedule 40 or Standard Weight zinc-coated steel pipe sleeves. Extend sleeves in floor slabs 3 inches above finished floor.

2.6.6.2 Sleeves in Partitions and Non-Masonry Structures

Provide zinc-coated steel sheet sleeves having a nominal weight of not less than 0.90 pound per square foot, in partitions and other than masonry and concrete walls, floors, and roofs.

2.7 FINISHES

Provide steel surfaces of equipment including packaged terminal units, heat pumps, and air conditioners, that do not have a zinc coating conforming to ASTM A 123/A 123M, or a duplex coating of zinc and paint, with a factory applied coating or paint system. Provide a coating or paint system on actual equipment identical to that on salt-spray test specimens with respect to materials, conditions of application, and dry-film thickness.
2.8 SOURCE QUALITY CONTROL

2.8.1 Salt-Spray Tests

Salt-spray test the factory-applied coating or paint system of equipment including heat pumps in accordance with ASTM B 117. Conduct test for 500 hours for equipment installed outdoors, or 125 hours for equipment installed indoors. Test specimens shall have a standard scribe mark as defined in ASTM D 1654. Upon completion of exposure, evaluate and rate the coating or paint system in accordance with procedures A and B of ASTM D 1654. Rating of failure at the scribe mark shall not be less than six, average creepage not greater than 1/8 inch. Rating of the unscribed area shall not be less than 10, no failure.

2.9 Energy Recovery Ventilator

Energy Recovery Ventilator shall be as manufactured by "Greenheck" or approved equal, provided all specifications are met. Greenheck Model ERVe equipment is used as the basis of design. Units shall be listed per ANSI/UL 1995, Heating and Cooling Equipment. Energy transfer ratings of the energy recovery wheel shall be ARI Certified. Ventilators shall bear the AMCA Certified Rating Seals for Air Performance. Performance shall be as scheduled on plans. Outdoor air shall not mix with exhaust air in a common plenum. Exhaust discharge and outside air intake shall not be located on the same side on roof top units.

2.10 Unit Casing and Frames

Unit shall be of internal frame type construction of galvanized steel. Frame and panels shall be G90 galvanized steel. All panels exposed to the weather shall be a minimum of 18 gauge galvanized steel. All internal panels for double wall construction shall be 24 gauge galvanized steel. Where top panels are joined there shall be a standing seam to insure positive weather protection. All metal-to-metal seams shall be sealed, requiring no caulking at job site.

2.11 Insulation

Unit casing to be insulated with 1 inch fiberglass with Foil-Scrim-Kraft facing. Insulation shall meet requirements of NFPA 90A and tested to meet UL 181 erosion requirements. Insulation shall be enclosed in double wall construction.

2.12 Energy Recovery Wheel

Wheel shall be of the enthalpy type for both sensible and latent heat recovery and be designed to insure laminar flow. Energy transfer ratings must be ARI Certified to Standard 1060 and bear the ARI certification symbol for ARI Air-to-Air Energy Recovery Ventilation Equipment Certification Program based on ARI 1060. Ratings "in accordance with 1060" without certification are not acceptable. Desiccant shall be silica gel for maximum latent energy transfer. Wheel shall be constructed of lightweight polymer media to minimize shaft and bearing loads. Energy wheel bearings shall be selected for a minimum (L10) life in excess of 400,000 hours (equivalent to L(50) 2,000,000 hours). Polymer media shall be mounted in a stainless steel rotor for corrosion resistance. Wheel design shall consist of removable segments (for wheels greater than 26 inches in
diameter) for ease of service and/or cleaning. Silica gel desiccant shall be permanently bonded to wheel media to retain latent heat recovery after cleaning. Wheels with sprayed on desiccant coatings are not acceptable. Wheels with desiccant applied after wheel formation are not acceptable. Energy recovery device shall transfer moisture entirely in the vapor phase. Energy recovery drive belt material shall be high strength urethane and shall be factory installed in a prestretched state, eliminating the need for field belt tension adjustment. Link style belts are not acceptable.

2.13 Access Doors

All components shall be easily accessible through removable doors for exhaust, supply, filter, and damper compartments. Energy recovery wheels (smaller than 54 inches) shall be mounted in a slide-out track for ease of inspection, removal, and cleaning.

2.14 Fan Sections

Centrifugal fans to be double width, double inlet, single fan forward curved type. All blower wheels shall be statically and dynamically balanced. Ground and polished steel fan shafts shall be mounted in permanently lubricated, sealed ball bearing pillow blocks. Bearings shall be selected for a minimum (L10) life in excess of 100,000 hours (equivalent to L(50) 500,000 hours) at maximum cataloged operating speeds. Separate motors for exhaust and supply blowers shall be provided. Adjustable sheaves on belt-driven fans with motors less than 10 hp shall allow independent balancing of exhaust and supply airflows. Fan and motor assemblies are mounted to unit base with neoprene isolators as standard. Fans shall be located in draw-through position in reference to the energy recovery wheel.

2.15 Motors and Drives

Motors shall be energy efficient, complying with EPACT standards, for single speed ODP and TEFC enclosures. Motors shall be permanently lubricated, heavy-duty type, matched to the fan load and furnished at the specified voltage, phase, and enclosure. Belt-drive motors shall be factory mounted to an adjustable motor plate having two heavy-duty adjusting bolts for alignment and belt tension. Drives shall be sized for a minimum of 150% of driven horsepower. Pulleys shall be of the fully machined cast type, keyed and securely attached to the fan wheel and motor shafts; 10 horsepower and less shall be supplied with an adjustable drive pulley. Energy wheel motors and direct-drive motors shall have integral overload protection.

2.16 Filters

Supply and exhaust air filters shall be 2-inch thick pleated fiberglass, 30% efficient and tested to meet UL Class 2. Filter racks shall be die-formed galvanized steel.

2.17 Electrical

All internal electrical components shall be factory wired for single point power connection. All electrical components shall be UL Listed, Approved or Classified where applicable and wired in compliance with the National Electrical Code.
PART 3 EXECUTION

3.1 EQUIPMENT INSTALLATION

Install equipment and components in a manner to ensure proper and sequential operation of equipment and equipment controls. Install equipment not covered in this section, or in manufacturer's instructions, as recommended by manufacturer's representative. Provide proper foundations for mounting of equipment, accessories, appurtenances, piping and controls including, but not limited to, supports, vibration isolators, stands, guides, anchors, clamps and brackets. Foundations for equipment shall conform to equipment manufacturer's recommendation, unless otherwise indicated. Set anchor bolts and sleeves using templates. Provide anchor bolts of adequate length, and provide with welded-on plates on the head end embedded in the concrete. Level equipment bases, using jacks or steel wedges, and neatly grout-in with a nonshrinking type of grouting mortar. Locate equipment to allow working space for servicing including shaft removal, disassembling compressor cylinders and pistons, replacing or adjusting drives, motors, or shaft seals, access to water heads and valves of shell and tube equipment, tube cleaning or replacement, access to automatic controls, refrigerant charging, lubrication, oil draining and working clearance under overhead lines. Provide electric isolation between dissimilar metals for the purpose of minimizing galvanic corrosion.

3.1.1 Unitary Air Conditioning System

Install as indicated, in accordance with requirements of ASHRAE 15, and the manufacturer's installation and operational instructions.

3.2 PIPING

Brazing, bending, forming and assembly of refrigerant piping shall conform to ASME B31.5.

3.2.1 Pipe Hangers and Supports

Design and fabrication of pipe hangers, supports, and welding attachments shall conform to MSS SP-58. Installation of hanger types and supports for bare and covered pipes shall conform to MSS SP-69 for the system temperature range. Unless otherwise indicated, horizontal and vertical piping attachments shall conform to MSS SP-58.

3.2.2 Refrigerant Piping

Cut pipe to measurements established at the site and work into place without springing or forcing. Install piping with sufficient flexibility to provide for expansion and contraction due to temperature fluctuation. Where pipe passes through building structure pipe joints shall not be concealed, but shall be located where they may be readily inspected. Install piping to be insulated with sufficient clearance to permit application of insulation. Install piping as indicated and detailed, to avoid interference with other piping, conduit, or equipment. Except where specifically indicated otherwise, run piping plumb and straight and parallel to walls and ceilings. Trapping of lines will not be permitted except where indicated. Provide sleeves of suitable size for lines passing through building structure. Braze refrigerant piping with silver solder complying with AWS A5.8/A5.8M. Inside of tubing and fittings shall be free of flux. Clean parts to be jointed with emery cloth and keep hot until solder has penetrated full depth of fitting and extra flux has been
expelled. Cool joints in air and remove flame marks and traces of flux. During brazing operation, prevent oxide film from forming on inside of tubing by slowly flowing dry nitrogen through tubing to expel air. Make provisions to automatically return oil on halocarbon systems. Installation of piping shall comply with ASME B31.5.

3.2.3 Returning Oil From Refrigerant System

Install refrigerant lines so that gas velocity in the evaporator suction line is sufficient to move oil along with gas to the compressor. Where equipment location requires vertical risers, line shall be sized to maintain sufficient velocity to lift oil at minimum system loading and corresponding reduction of gas volume. Install a double riser when excess velocity and pressure drop would result from full system loading. Larger riser shall have a trap, of minimum volume, obtained by use of 90- and 45-degree ells. Arrange small riser with inlet close to bottom of horizontal line, and connect to top of upper horizontal line. Do not install valves in risers.

3.2.4 Refrigerant Driers, Sight Glass Indicators, and Strainers

Provide refrigerant driers, sight glass liquid indicators, and strainers in refrigerant piping in accordance with FS A-A-50502 when not furnished by the manufacturer as part of the equipment. Install driers in liquid line with service valves and valved bypass line the same size as liquid line in which dryer is installed. Size of driers shall be determined by piping and installation of the unit on location. Install dryers of 50 cubic inches and larger vertically with the cover for removing cartridge at the bottom. Install moisture indicators in the liquid line downstream of the drier. Indicator connections shall be the same size as the liquid line in which it is installed.

3.2.5 Strainer Locations and Installation

Locate strainers close to equipment they are to protect. Provide a strainer in common refrigerant liquid supply to two or more thermal valves in parallel when each thermal valve has a built-in strainer. Install strainers with screen down and in direction of flow as indicated on strainer's body.

3.2.6 Solenoid Valve Installation

Install solenoid valves in horizontal lines with stem vertical and with flow in direction indicated on valve. If not incorporated as integral part of the valve, provide a strainer upstream of the solenoid valve. Provide service valves upstream of the solenoid valve, upstream of the strainer, and downstream of the solenoid valve. Remove the internal parts of the solenoid valve when brazing the valve.

3.3 AUXILIARY DRAIN PANS, DRAIN CONNECTIONS, AND DRAIN LINES

Provide auxiliary drain pans under units located above finished ceilings or over mechanical or electrical equipment where condensate overflow will cause damage to ceilings, piping, and equipment below. Provide separate drain lines for the unit drain and auxiliary drain pans. Trap drain pans from the bottom to ensure complete pan drainage. Provide drain lines full size of drain opening. Traps and piping to drainage disposal points shall conform to Section 22 00 00 PLUMBING SYSTEMS.
3.4 ACCESS PANELS

Provide access panels for concealed valves, controls, dampers, and other fittings requiring inspection and maintenance.

3.5 AIR FILTERS

Allow access space for servicing filters. Install filters with suitable sealing to prevent bypassing of air.

3.6 IDENTIFICATION TAGS AND PLATES

Provide equipment, gages, thermometers, valves, and controllers with tags numbered and stamped for their use. Provide plates and tags of brass or suitable nonferrous material, securely mounted or attached. Provide minimum letter and numeral size of 1/8 inch high.

3.7 FIELD QUALITY CONTROL

3.7.1 Leak Testing

Upon completion of installation of air conditioning equipment, test factory- and field-installed refrigerant piping with an electronic-type leak detector. Use same type of refrigerant to be provided in the system for leak testing. When nitrogen is used to boost system pressure for testing, ensure that it is eliminated from the system before charging. Minimum refrigerant leak field test pressure shall be as specified in ASHRAE 15, except that test pressure shall not exceed 150 psig on hermetic compressors unless otherwise specified as a low side test pressure on the equipment nameplate. If leaks are detected at time of installation or during warranty period, remove the entire refrigerant charge from the system, correct leaks, and retest system.

3.7.2 Evacuation, Dehydration, and Charging

After field charged refrigerant system is found to be without leaks or after leaks have been repaired on field-charged and factory-charged systems, evacuate the system using a reliable gage and a vacuum pump capable of pulling a vacuum of at least one mm Hg absolute. Evacuate system in accordance with the triple-evacuation and blotter method or in accordance with equipment manufacturer's printed instructions and recharge system.

3.7.3 Start-Up and Initial Operational Tests

Test the air conditioning systems and systems components for proper operation. Adjust safety and automatic control instruments as necessary to ensure proper operation and sequence. Conduct operational tests for not less than 8 hours.

3.7.4 Performance Tests

Upon completion of evacuation, charging, startup, final leak testing, and proper adjustment of controls, test the systems to demonstrate compliance with performance and capacity requirements. Test systems for not less than 8 hours, record readings hourly. At the end of the test period, average the readings, and the average shall be considered to be the system performance.
3.8 WASTE MANAGEMENT

Separate waste in accordance with the Waste Management Plan, placing copper materials in designated areas for reuse. Close and seal tightly all partly used adhesives and solvents; store protected in a well-ventilated, fire-safe area at moderate temperature.

-- End of Section --
SECTION 28 31 76

INTERIOR FIRE ALARM AND MASS NOTIFICATION SYSTEM

PART 1 GENERAL

1.1 RELATED SECTIONS

Section 26 00 00.00 20 BASIC ELECTRICAL MATERIALS AND METHODS, applies to this section, with the additions and modifications specified herein. In addition, refer to the following sections for related work and coordination:

Section 21 13 13.00 20 WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only. However, compliance with all UFC's and NFPA standards are required, along with base standards, and manufacturer recommendations. Recommendations within these documents shall be considered mandatory.

ACOUSTICAL SOCIETY OF AMERICA (ASA)

FM GLOBAL (FM)

FM APP GUIDE (updated on-line) Approval Guide
http://www.approvalguide.com/CC_host/pages/public/custom

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC)

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

Indicating Equipment

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NFPA 70</td>
<td>(2011) National Electrical Code</td>
</tr>
<tr>
<td>NFPA 72</td>
<td>(2010; TIA 10-4) National Fire Alarm and Signaling Code</td>
</tr>
<tr>
<td>NFPA 90A</td>
<td>(2009; Errata 09-1) Standard for the Installation of Air Conditioning and Ventilating Systems</td>
</tr>
</tbody>
</table>

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

| 47 CFR 15 | Radio Frequency Devices |
| 47 CFR 90 | Private Land Mobile Radio Services |

UNDERWRITERS LABORATORIES (UL)

UL 1971	(2002; Reprint Oct 2008) Signaling Devices for the Hearing Impaired
UL 2017	(2008; Reprint Oct 2009) General-Purpose Signaling Devices and Systems
UL 228	(2006; Reprint Nov 2008) Door Closers-Holders, With or Without Integral Smoke Detectors
UL 268	(2009) Smoke Detectors for Fire Alarm Systems
UL 268A	(2008; Reprint Sep 2009) Smoke Detectors for Duct Application
UL 864	(2003; Reprint Feb 2010) Standard for Control Units and Accessories for Fire Alarm Systems

U.S. DEPARTMENT OF DEFENSE (DOD)
1.3 DEFINITIONS

Wherever mentioned in this specification or on the drawings, the equipment, devices, and functions shall be defined as follows:

a. Analog/Addressable System: A system where multiple signals are transmitted via the same conduction path to a remote fire alarm control unit and fire alarm control panel, decoded and separated so that each signal will initiate the specified response.

b. Interface Device: An addressable device that interconnects hard-wired systems or devices to an analog/addressable system.

c. Fire Alarm and Mass Notification Control Panel (FACP/FMCP): A master control panel having the features of a fire alarm and mass notification control unit and fire alarm and mass notification control units are interconnected. The panel has central processing, memory, input and output terminals, video display units (VDUs), and printers.

d. Terminal Cabinet: A steel cabinet with locking, hinge-mounted door that terminal strips are securely mounted.

1.4 SYSTEM DESCRIPTION

1.4.1 Scope

a. This work includes providing a new, complete, and fully operational analog/addressable fire alarm and mass notification system as described herein and on the contract drawings. Include all equipment and programming of the transmission equipment used in the base reporting system so that the system is completely functional. Include in the system wiring, raceways, pull boxes, terminal cabinets, outlet and mounting boxes, control equipment, alarm, and supervisory signal initiating devices, alarm notification appliances, supervising station fire alarm system transmitter, and other accessories and miscellaneous items required for a complete operating system even though each item is not specifically mentioned or described. Provide system complete and ready for operation including complete communications with the base radio receiver.

b. Provide equipment, materials, installation, workmanship, inspection, and testing in strict accordance with the required and advisory provisions of NFPA 72, except as modified herein. The system layouts on the drawings show the intent of coverage and are shown in suggested locations. Final quantity, system layout, and coordination are the responsibility of the Contractor. A single fire alarm control panel is indicated with terminal cabinets at each floor. When applicable, ensure products and materials are suitable for exterior or hazardous areas.

c. The fire alarm system shall be non-propriety, allowing for various sources of supply and service, without restrictions or special requirements that would prohibit the Government from taking possession of the final software program or obtaining manufacturer training. The choice of products by the contractor shall be one that reasonably ensures that the make/model and components will be in current production for at least 15 years after installation.
1.4.2 Technical Data and Computer Software

Technical data and computer software (meaning technical data that relates to computer software) that are specifically identified in this project, and may be defined/required in other specifications, shall be delivered, strictly in accordance with the CONTRACT CLAUSES. Identify data delivered by reference to the particular specification paragraph against which it is furnished. Data to be submitted shall include complete system, equipment, and software descriptions. Descriptions shall show how the equipment will operate as a system to meet the performance requirements of this contract. The data package shall also include the following:

a. Identification of programmable portions of system equipment and capabilities.

b. Description of system revision and expansion capabilities and methods of implementation detailing both equipment and software requirements.

c. Provision of operational software data on all modes of programmable portions of the fire alarm and detection system.

d. Description of Fire Alarm Control Panel equipment operation.

e. Description of auxiliary and remote equipment operations.

f. Library of application software.

g. Operation and maintenance manuals.

1.4.3 Keys

Keys and locks for equipment shall be identical. Provide not less than six keys of each type required. All keys and locks shall be mastered to a single key as required by the local AHJ.

1.5 SUBMITTALS

Partial submittals are not permitted unless approved by the Government prior to the submittal process. Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for contractor Quality Control approval. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Annotated catalog data, in table format on the drawings, showing manufacturer's name, model, voltage, and catalog numbers for equipment and components. Submitted shop drawings shall not be smaller than ISO A1.

Wiring Diagrams; G]

Point-to-point wiring diagrams showing the points of connection and terminals used for electrical field connections in the system, including interconnections between the equipment or systems that are supervised or controlled by the system. Diagrams shall show connections from field devices to the FACP and remote fire alarm control units, initiating circuits, switches, relays and terminals.
Complete riser diagrams indicating the wiring sequence of devices and their connections to the control equipment. Include a color code schedule for the wiring. Include floor plans showing the locations of devices and equipment.

System Layout; G

Plan view drawing showing device locations, terminal cabinet locations, junction boxes, other related equipment, conduit routing, wire counts, circuit identification in each conduit, and circuit layouts for all floors. Drawings shall comply with the requirements of **NFPA 170**, Fire Safety Symbols.

System Operation; G

A complete list of device addresses and corresponding messages.

Notification Appliances; G

Data on each circuit to indicate that there is at least 25 percent spare capacity for notification appliances, 25 percent spare capacity for initiating devices. Annotate data for each circuit on the drawings.

Amplifiers; G

Data to indicate that the amplifiers have sufficient capacity to simultaneously drive all notification speakers at the maximum rating plus 50 percent spare capacity. Annotate data for each circuit on the drawings.

As-Built Drawings

Six sets of detailed as-built drawings. The drawings shall include complete wiring diagrams showing connections between devices and equipment, both factory and field wired. Include a riser diagram and drawings showing the as-built location of devices and equipment. The drawings shall show the system as installed, including deviations from both the project drawings and the approved shop drawings. These drawings shall be submitted within two weeks after the final acceptance test of the system. At least one set of as-built (marked-up) drawings shall be provided at the time of, or prior to the final acceptance test.

SD-03 Product Data

UL or FM listing cards for equipment provided.

Technical Data And Computer Software; G

Fire Alarm And Mass Notification Control Panel (FACP/FMCP); G
Printers; G
Video Display Unit (VDU); G
Terminal cabinets/assemblies; G
Manual stations; G
Transmitters (including housing); G
Batteries; G
Battery chargers; G
Smoke sensors; G
Thermal sensors; G
Wiring and cable; G
Notification appliances; G
Addressable interface devices; G
Amplifiers; G
Tone generators; G
Digitalized voice generators; G
Firefighter telephone; G
Waterflow detectors; G
Tamper switches; G
Electromagnetic door holders; G
Remote fire alarm control units; G
Radio transmitter and interface panels; G

SD-05 Design Data

System Operation; G

A complete description of the system operation in matrix format on the drawings.

Battery power; G

Battery calculations as required in paragraph Battery Power Calculations.

SD-06 Test Reports

Field Quality Control Testing Procedures; G
Smoke sensor testing procedures; G

SD-07 Certificates

Installer

SD-09 Manufacturer's Field Reports

Mass Notification System

A unique identifier for each device, including the control panel and initiating and indicating devices, with an indication of test results, and signature of the factory-trained technician of the control panel manufacturer and equipment installer. With reports on preliminary tests, include printer information. Include the NFPA 72 Record of Completion and NFPA 72 Inspection and Testing Form, with the appropriate test reports.

SD-10 Operation and Maintenance Data

Operation and Maintenance (O&M) Instructions; G

Six copies of the Operation and Maintenance Instructions, indexed and in booklet form. The Operation and Maintenance Instructions shall be a single volume or in separate volumes, and may be submitted as a Technical Data Package. Manuals shall be approved prior to training.
Original and backup copies of all software delivered for this project, on each type of CD/DVD media utilized.

Instruction of Government Employees

The installers training history for the employees involved with this contract.

1.6 QUALITY ASSURANCE

Equipment and devices shall be compatible and operable with existing station fire alarm system and shall not impair reliability or operational functions of existing proprietary type Supervising Station (PSS). The primary PSS is located in the PMO B.584. The secondary PSS is also located in the PMO B.584. The existing PSS is based on products as manufactured by King-Fisher Company, Inc.

a. In NFPA publications referred to herein, consider advisory provisions to be mandatory, as though the word "shall" had been substituted for "should" wherever it appears; interpret reference to "authority having jurisdiction" to mean the Naval Facilities Engineering Command, South East Division Fire Protection Engineer.

b. The recommended practices stated in the manufacturer's literature or documentation shall be considered as mandatory requirements.

c. Devices and equipment for fire alarm service shall be listed by UL Fire Prot Dir or approved by PM P7825a.

d. Wherever existing conditions were altered, modified, or damaged by work, the contractor shall repair, patch, finish, and paint to match existing conditions prior to work. Maintain all fire barriers in accordance with their Listing. Maintain integrity of all non-rated walls with repairs consistent with the original methods of construction.

1.6.1 Qualifications

1.6.1.1 Design/Shop Drawing Services

Modification of Design Documents, (i.e. Building Code/Life Safety Analysis, plans, specifications, and calculations) shall be developed by, or under the supervision of the contractor's Qualified Fire Protection Engineer. For the purpose of meeting this requirement, a qualified engineer is defined as a registered professional engineer (P.E) who has passed the fire protection engineering written examination administered by the National Council of Examiners for Engineering and Surveys (NCEES).

Creation of Shop Drawings, layouts, material selection, and components, for the purpose of complying with the design documents shall be accomplished by a minimum NICET Level 4 Fire Alarm Technician.

1.6.1.2 Supervisor

The installing Contractor shall provide the following: NICET Fire Alarm Technicians to perform the installation of the system. A NICET Level 3 Fire Alarm Technician shall supervise the installation of the fire alarm system/mass notification system. The Fire Alarm technicians supervising the installation of equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on
the drawings.

1.6.1.3 Technician

The installing Contractor shall provide the following: Fire Alarm Technicians with a minimum of four years of experience utilized to assist in the installation and terminate fire alarm/mass notification devices, cabinets and panels. The Fire Alarm technicians installing the equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.6.1.4 Installer

The installing Contractor shall provide the following: Fire Alarm installer with a minimum of two years of experience utilized to assist in the installation of fire alarm/mass notification devices, cabinets and panels. An electrician shall be allowed to install wire or cable and to install conduit for the fire alarm system/mass notification system. The Fire Alarm installer shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.6.1.5 Test Personnel

The installing Contractor shall provide the following: Fire Alarm Technicians with a minimum of eight years of experience utilized to test and certify the installation of the fire alarm/mass notification devices, cabinets and panels. The Fire Alarm technicians testing the equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.6.1.6 Manufacturer's Representative

The fire alarm and mass notification equipment manufacturer's representative shall be present for the connection of wiring to the control panel. The Manufacturer's Representative shall be an employee of the manufacturer with necessary technical training on the system being installed.

1.6.1.7 Manufacturer

Components shall be of current design and shall be in regular and recurrent production at the time of installation. Provide design, materials, and devices for a protected premises fire alarm system, complete, conforming to NFPA 72, except as otherwise or additionally specified herein.

1.6.2 Regulatory Requirements

1.6.2.1 Requirements for Fire Protection Service

Equipment and material shall have been tested by UL and listed in UL Fire Prot Dir or approved by FM and listed in FM APP GUIDE. Where the terms "listed" or "approved" appear in this specification, they shall mean listed in UL Fire Prot Dir or FM APP GUIDE. The omission of these terms under the description of any item of equipment described shall not be construed as waiving this requirement. All listings or approval by testing laboratories shall be from an existing ANSI or UL published standard.
1.6.2.2 Mass Notification System

The equipment furnished shall be compatible and be UL listed, FM approved, or approved or listed by a nationally recognized testing laboratory for the intended use. All listings or approval by testing laboratories shall be from an existing ANSI or UL published standard.

1.6.2.3 Testing Services or Laboratories

Fire alarm and fire detection equipment shall be constructed in accordance with UL Fire Prot Dir, UL Electrical Constructn, or FM P7825a.

1.7 DELIVERY, STORAGE, AND HANDLING

Protect equipment delivered and placed in storage from the weather, humidity, and temperature variation, dirt and dust, and other contaminants.

Workmanship shall be neat and professional and systems shall be protected from damage during construction. Parts and components shall be listed for their particular service. Provide labels for all addressable devices, panels, and controls. Mount all panels and controls at eye-level or below. Provide clearance for access, inspection, maintenance, repair, and removal.

All wiring, exposed, above ceilings, or in panels and junction boxes, shall be neat and professional. Wire nuts are not permitted for fire alarm connections and all components shall be protected from dust and damage during construction.

1.8 OPERATION AND MAINTENANCE (O&M) INSTRUCTIONS

The Interior Fire Alarm And Mass Notification System Operation and Maintenance Instructions shall include:

a. "Manufacturer Data Package ___3__" as specified in Section 01 78 23.00 25 OPERATION AND MAINTENANCE DATA.

b. Operating manual outlining step-by-step procedures required for system startup, operation, and shutdown. The manual shall include the manufacturer's name, model number, service manual, parts list, and complete description of equipment and their basic operating features.

c. Maintenance manual listing routine maintenance procedures, possible breakdowns and repairs, and troubleshooting guide. The manuals shall include conduit layout, equipment layout and simplified wiring, and control diagrams of the system as installed.

d. The manuals shall include complete procedures for system revision and expansion, detailing both equipment and software requirements.

e. Software delivered for this project shall be provided, on each type of CD/DVD media utilized.

f. Printouts of configuration settings for all devices.

g. Routine maintenance checklist. The routine maintenance checklist shall be arranged in a columnar format. The first column shall list all installed devices, the second column shall state the maintenance activity or state no maintenance required, the third column shall state the frequency of the maintenance activity, and the fourth column for
1.9 EXTRA MATERIALS

1.9.1 Repair Service/Replacement Parts

Repair services and replacement parts for the system shall be available for a period of 10 years after the date of final acceptance of this work by the Contracting Officer. During guarantee period, the service technician shall be on-site within 24 hours after notification. All repairs shall be completed within 24 hours of arrival on-site.

1.9.2 Interchangeable Parts

Spare parts furnished shall be directly interchangeable with the corresponding components of the installed system. Spare parts shall be suitably packaged and identified by nameplate, tagging, or stamping. Spare parts shall be delivered to the Contracting Officer at the time of the final acceptance testing.

1.9.3 Spare Parts

Furnish the following spare parts and accessories:

 a. Four fuses for each fused circuit

1.9.4 Special Tools

Software, connecting cables and proprietary equipment, necessary for the maintenance, testing, and reprogramming of the equipment shall be furnished to the Contracting Officer.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

2.1.1 Standard Products

Provide materials, equipment, and devices that have been tested by a nationally recognized testing laboratory, such as UL or FM, and listed or approved for fire protection service when so required by NFPA 72 or this specification. Select material from one manufacturer, where possible, and not a combination of manufacturers, for any particular classification of materials. The fire alarm operating system shall be non-proprietary, allowing for various sources of supply and service. The choice of products by the contractor shall be one that reasonably ensures that the make/model and components will be in current production for at least two years after installation and repair parts will be available for at least 15 years after installation.

2.1.2 Nameplates

Major components of equipment shall have the manufacturer's name, address, type or style, model or serial number, catalog number, date of installation, installing Contractor's name and address, and the contract number provided on a new plate permanently affixed to the item or equipment. Major components include, but are not limited to, the following:

 a. FACPs
b. FACUs

c. Supervising station fire alarm transmitter

Furnish nameplates to obtain approval by the Contracting Officer before installation. Obtain approval by the Contracting Officer for installation locations. Nameplates shall be etched metal or plastic, permanently attached by screws to panels or adjacent walls.

2.2 GENERAL PRODUCT REQUIREMENT

All fire alarm and mass notification equipment shall be listed for use under the applicable reference standards. Ensure products and materials are suitable for exterior use of hazardous areas, when applicable. Interfacing of Listed UL 864 or similar approved industry listing with Mass Notification Panels listed to UL 2017 or equal shall be done in a laboratory listed configuration, if the software programming features cannot provide a listed interface control. If a field modification is needed, such as adding equipment like relays, the manufacturer of the panels being same or different brand from manufacturer shall provide the installing contractor for review and confirmation by the installing contractor. The installing contractor shall, as part of the submittal documents, provide this information.

2.3 SYSTEM OPERATION

The Addressable Interior Fire Alarm and Mass Notification System shall be a complete, supervised, noncoded, analog/addressable fire alarm and mass notification system conforming to NFPA 72, UL 864 Ninth Edition, and UL 2017. The fire alarm system shall be fully addressable up to each individual device and be designed to accommodate the entire building. All addressable devices shall be clearly labeled with their address, including monitor modules. The system shall be activated into the alarm mode by actuation of any alarm initiating device. The system shall remain in the alarm mode until the initiating device is reset and the fire alarm control panel is reset and restored to normal. Provide audibility in all spaces including remote mechanical and electrical rooms. Provide combination audible/visual appliances in locations where there are high ambient noise levels. The system may be placed in the alert mode by local microphones or remotely from authorized locations/users. Connect alarm initiating devices to signal line circuits (SLC) Class A Survivability Level 1, installed in accordance with NFPA 72. Any single impairment of the system shall not affect the system on more than one-half of an floor. The conduit loop requirement is not applicable to the signal transmission link from the local panels (at the protected premises) to PSS. Audible, and visual appliances and systems shall comply with NFPA 72. Fire alarm system/mass notification system components requiring power, except for the control panel power supply, shall operate on 24 volts dc.

2.3.1 Functions and Operating Features

The system shall provide the following functions and operating features:

a. The FACP/FMCP and fire alarm and mass notification control units, if used, shall provide power, annunciation, supervision, and control for the system. Addressable systems shall be microcomputer (microprocessor or microcontroller) based with a minimum word size of eight bits with sufficient memory to perform as specified.
b. Provide **Class B survivability Level 1** initiating device circuits for conductor lengths of 3 feet or less.

c. Provide **Class A Survivability Level 1** signaling line circuits (SLC).

d. Provide **Class A Survivability Level 1** notification appliance circuits. The visual alarm notification appliances shall have the flash rates synchronized throughout.

e. Provide electrical supervision of the primary power (AC) supply, presence of the battery, battery voltage, and placement of system modules within the control panel.

f. Provide an audible and visual trouble signal to activate upon a single break or open condition, or ground fault. The trouble signal shall also operate upon loss of primary power (AC) supply, absence of a battery supply, low battery voltage, or removal of alarm or supervisory panel modules. Provide a trouble alarm silence feature that shall silence the audible trouble signal, without affecting the visual indicator. After the system returns to normal operating conditions, the trouble signal shall again sound until the trouble is acknowledged. A smoke sensor in the process of being verified for the actual presence of smoke shall not initiate a trouble condition.

g. Provide a notification appliance silencing switch, that when activated, will silence the audible signal appliance, but will not affect the visual alarm indicator, the liquid crystal display, or the automatic notification of the PSS. This switch shall be overridden upon activation of a subsequent alarm.

h. Provide alarm verification capability for smoke sensors. Alarm verification shall initially be set for 30 seconds.

i. Provide program capability via switches in a locked portion of the FACP to bypass the automatic notification appliance circuits, fire reporting systemair handler shutdownelevator recalldoor releasedoor unlocking features. Operation of this programming shall indicate this action on the FACP display.

j. Alarm, supervisory, and/or trouble signals shall be automatically transmitted to the PSS.

k. Alarm functions shall override trouble or supervisory functions. Supervisory functions shall override trouble functions.

l. The system shall be capable of being programmed from the panels keyboard. Programmed information shall be stored in non-volatile memory.

m. The system shall be capable of operating, supervising, and/or monitoring both addressable and non-addressable alarm and supervisory devices.

n. There shall be no limit, other than maximum system capacity, as to the number of addressable devices, that may be in alarm simultaneously.

o. Where the fire alarm system is responsible for initiating an action in another emergency control device or system, such as an HVAC system
or an elevator system, the addressable fire alarm relay shall be within 3 feet of the emergency control device.

p. An alarm signal shall automatically initiate the following functions:

1. Transmission of an alarm signal to PSS.

2. Visual indication of the device operated on the fire alarm control panel (FACP), and on the fire alarm annunciator. Indication on the fire alarm annunciator shall be by identical to that shown on the FACP.

3. Continuous actuation of.

r. A trouble condition shall automatically initiate the following functions:

1. Visual indication of the system trouble on the FACP, and on the fire alarm annunciator, and sound the audible alarm at the respective panel.

2. Transmission of a trouble signal to PSS.

3. Recording of the event electronically in the history log of the fire control system unit.

s. The maximum permissible elapsed time between the actuation of an initiating device and its indication at the FACP and the fire alarm annunciator shall be 10 seconds.

t. The maximum elapsed time between the occurrence of the trouble condition and its indication at the FACP and the fire alarm annunciator shall not exceed 200 seconds.

u. All circuits shall have a minimum 25 percent spare capacity.

v. Duct smoke detectors located more than 5-1/2 feet above finished floor, or which are not conveniently located for inspection and maintenance shall be fitted with a remote device which displays power, alarm, test, and reset functions. Locate the remote device in an accessible location no more than 5-1/2 feet above the finished floor.

w. The following items shall be located within an enclosure adjacent to the FACP: updated fire alarm drawings showing the location of each device and address, a current "points list", with address and descriptor, and the panel wiring diagram.

x. Software, keys, and access codes shall be turned over to the Government and the name of the installing fire alarm contractor, point of contact, phone number, and the date of installation shall be written on the inside cover of the FACP.

2.4 SYSTEM MONITORING

2.4.1 Valves

Each valve affecting the proper operation of a fire protection system, including automatic sprinkler control valves, sprinkler service entrance
valve, isolating valves for pressure type waterflow or supervision switches, and valves at backflow preventers, whether supplied under this contract or existing, shall be electrically monitored to ensure its proper position. Each tamper switch shall be provided with a separate address.

2.4.2 Independent Fire Detection System

Each existing independent smoke detection subsystem, shall be monitored both for the presence of an alarm condition and for a trouble condition. Each monitored condition shall be provided with a separate address.

2.5 MASS NOTIFICATION SYSTEM FUNCTIONS

2.5.1 Notification Appliance Network

The notification appliance network consists of audio speakers located to provide intelligible instructions at all locations in the building areas as indicated on the drawings. The Mass Notification System announcements shall take priority over all other function of the system including the audible and visual output of the fire alarm system in a normal or alarm state. All fire alarm system functions shall continue in an alarm state except for the output signals of the audible and visual notification appliances.

2.5.2 Strobes

Strobes are also provided to alert hearing-impaired occupants. Visual appliances shall have a clear lense, a white base, with red lettering indicating "ALERT".

2.5.3 Giant Voice

Connect FACP to Government Furnished Government Installed (GFGI) Base-wide mass notification system broadcasts (i.e., coded audible and textual signals, and prerecorded digitized or live voice messages.)

2.5.4 Voice Notification

An autonomous voice notification control unit is used to monitor and control the notification appliance network and provide consoles for local operation. Using a console, personnel in the building can initiate delivery of pre-recorded voice messages, provide live voice messages and instructions, and initiate visual strobe and textual message notification appliances. The autonomous voice notification control unit will temporarily override audible fire alarm notification while delivering Mass Notification messages to ensure they are intelligible.

2.6 OVERVOLTAGE AND SURGE PROTECTION

2.6.1 Signaling Line Circuit Surge Protection

For systems having circuits located outdoors, communications equipment shall be protected against surges induced on any signaling line circuit and shall comply with the applicable requirements of IEEE C62.41.1 and IEEE C62.41.2. Cables and conductors, that serve as communications links, shall have surge protection circuits installed at each end that meet the following waveform(s):

a. A 10 microsecond by 1000 microsecond waveform with a peak voltage
of 1500 volts and a peak current of 60 amperes.

b. An 8 microsecond by 20 microsecond waveform with a peak voltage of 1000 volts and a peak current of 500 amperes. Protection shall be provided at the equipment. Additional triple electrode gas surge protectors, rated for the application, shall be installed on each wireline circuit within 3 feet of the building cable entrance. Fuses shall not be used for surge protection.

2.6.2 Sensor Wiring Surge Protection

Digital and analog inputs and outputs shall be protected against surges induced by sensor wiring installed outdoors and as shown. The inputs and outputs shall be tested with the following waveform:

a. A 10 by 1000 microsecond waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.

b. An 8 by 20 microsecond waveform with a peak voltage of 1000 volts and a peak current of 500 amperes. Fuses shall not be used for surge protection.

2.7 ADDRESSABLE INTERFACE DEVICES

The initiating device being monitored shall be configured as a Class A Survivability Level 1 initiating device circuits. The system shall be capable of defining any module as an alarm module and report alarm trouble, loss of polling, or as a supervisory module, and reporting supervisory short, supervisory open or loss of polling such as workflow switches, valve supervisory switches, fire pump monitoring, independent smoke detection systems, relays for output function actuation, etc. The module shall be UL or FM listed as compatible with the control panel. The monitor module shall provide address setting means compatible with the control panel's SLC supervision and store an internal identifying code. Monitor module shall contain an integral LED that flashes each time the monitor module is polled. Pull stations with a monitor module in a common backbox are not required to have an LED.

2.8 ADDRESSABLE CONTROL MODULE

The control module shall be capable of operating as a relay (dry contact form C) for interfacing the control panel with other systems, and to control door holders or initiate elevator fire service. The module shall be UL or FM listed as compatible with the control panel. The indicating device or the external load being controlled shall be configured as a Style Y notification appliance circuits. The system shall be capable of supervising, audible, visual and dry contact circuits. The control module shall have both an input and output address. The supervision shall detect a short on the supervised circuit and shall prevent power from being applied to the circuit. The control model shall provide address setting means compatible with the control panel's SLC supervision and store an internal identifying code. The control module shall contain an integral LED that flashes each time the control module is polled. Control Modules shall be located in environmental areas that reflect the conditions to which they were listed.

2.9 ISOLATION MODULES

Provide isolation modules to subdivide each signaling line circuit into
groups of not more than 20 addressable devices between adjacent isolation modules.

2.10 SMOKE SENSORS

2.10.1 Photoelectric Smoke Sensors

Provide addressable photoelectric smoke sensors as follows:

a. Provide analog/addressable photoelectric smoke sensors utilizing the photoelectric light scattering principle for operation in accordance with UL 268. Smoke sensors shall be listed for use with the fire alarm control panel.

b. Provide self-restoring type sensors that do not require any readjustment after actuation at the FACP to restore them to normal operation. Sensors shall be UL listed as smoke-automatic fire sensors.

c. Components shall be rust and corrosion resistant. Vibration shall have no effect on the sensor's operation. Protect the detection chamber with a fine mesh metallic screen that prevents the entrance of insects or airborne materials. The screen shall not inhibit the movement of smoke particles into the chamber.

d. Provide twist lock bases for the sensors. The sensors shall maintain contact with their bases without the use of springs. Provide companion mounting base with screw terminals for each conductor. Terminate field wiring on the screw terminals. The sensor shall have a visual indicator to show actuation.

e. The sensor address shall identify the particular unit, its location within the system, and its sensitivity setting. Sensors shall be of the low voltage type rated for use on a 24 VDC system.

f. An operator at the control panel, having a proper access level, shall have the capability to manually access the following information for each initiating device.

(1) Primary status
(2) Device type
(3) Present average value
(4) Present sensitivity selected
(5) Sensor range (normal, dirty, etc.)

2.10.2 Ionization Type Smoke Sensors

Provide addressable ionization type smoke sensors as follows:

a. Provide analog smoke sensors that operate on the ionization principle and are actuated by the presence of visible or invisible products of combustion. Smoke sensors shall be listed for use with the fire alarm control panel.

b. Provide self-restoring type sensors that do not require any readjustment after actuation at the FACP to restore them to normal
operation. Sensors shall be UL or FM listed as smoke-automatic fire sensors.

c. Components shall be rust and corrosion resistant. Vibration shall have no effect on the sensor's operation. Protect the detection chamber with a fine mesh metallic screen that prevents the entrance of insects or airborne materials. The screen shall not inhibit the movement of smoke particles into the chamber.

d. Provide twist lock bases for the sensors. The sensors shall maintain contact with their bases without the use of springs. Provide companion mounting base with screw terminals for each conductor. Terminate field wiring on the screw terminals. The sensor shall have a visual indicator to show actuation.

e. The sensor address shall identify the particular unit, its location within the system, and its sensitivity setting. Sensors shall be of the low voltage type rated for use on a 24 VDC system.

f. An operator at the control panel, having a proper access level, shall have the capability to manually access the following information for each initiating device.

 (1) Primary status
 (2) Device type
 (3) Present average value
 (4) Present sensitivity selected
 (5) Sensor range (normal, dirty, etc.)
 (6) Sensitivity adjustments for smoke detectors.

2.10.3 Projected Beam Smoke Detectors

Detectors shall be designed for detection of abnormal smoke densities. Detectors shall consist of separate transmitter and receiver units. The transmitter unit shall emit an infrared beam to the receiver unit. When the signal at the receiver falls below a preset sensitivity, the detector shall initiate an alarm. The receiver shall contain an LED that is powered upon an alarm condition. Long-term changes to the received signal caused by environmental variations shall be automatically compensated. Detectors shall incorporate features to assure that they are operational; a trouble signal shall be initiated if the beam is obstructed, the limits of the compensation circuit are reached, or the housing cover is removed. Detectors shall have multiple sensitivity settings in order to meet UL listings for the different distances covered by the beam. In the event of beam interference for more than three seconds a trouble alarm shall be transmitted.

2.10.4 Duct Smoke Sensors

Duct-mounted photoelectric smoke detectors shall be furnished and installed where indicated and in accordance with NFPA 90A. Units shall consist of a smoke detector as specified in paragraph Photoelectric Detectors, mounted in a special housing fitted with duct sampling tubes. Detector circuitry shall be mounted in a metallic enclosure exterior to the duct. Detectors
shall have a manual reset. Detectors shall be rated for air velocities that include air flows between 500 and 4000 fpm. Detectors shall be powered from the fire alarm panel.

a. Sampling tubes shall run the full width of the duct. The duct detector package shall conform to the requirements of NFPA 90A, UL 268A, and shall be UL listed for use in air-handling systems. The control functions, operation, reset, and bypass shall be controlled from the fire alarm control panel.

b. Lights to indicate the operation and alarm condition; and the test and reset buttons shall be visible and accessible with the unit installed and the cover in place. Provide wall mount remote alarm indicating and test switch panel with red LED alarm indicating lamp and test/reset key switch. Mount indicating and test switch panel on a device box centered at 54 inches above finished floor.

c. Remote alarm indicating and test switch panels as well as the affected fan units shall be properly identified in etched plastic placecards. Detectors shall provide for control of auxiliary contacts that provide control, interlock, and shutdown functions specified in Section 23 09 23.13 20. Auxiliary contacts provide for this function shall be located within 3 feet of the controlled circuit or appliance. The detectors shall be supplied by the fire alarm system manufacturer to ensure complete system compatibility.

2.10.5 Smoke Sensor Testing

Smoke sensors shall be tested in accordance with NFPA 72 and manufacturer's recommended calibrated test method. Submit smoke sensor testing procedures for approval.

2.11 THERMAL SENSORS

2.11.1 Heat Detectors

Heat detectors shall be designed for detection of fire by combination fixed temperature and rate-of-rise principle rate-compensating principle. The alarm condition shall be determined by comparing sensor valve with the stored values. Heat detector spacing shall be rated in accordance with UL 521. Detectors located in areas subject to moisture, exterior atmospheric conditions, or hazardous locations as defined by NFPA 70, shall be types approved for such locations.

2.12 ELECTRIC POWER

2.12.1 Primary Power

Power shall be 120 VAC service for the FACP, FACU and supervising station fire alarm transmitter.

2.13 EMERGENCY POWER SUPPLY

Provide for system operation in the event of primary power source failure. Transfer from normal to auxiliary (secondary) power or restoration from auxiliary to normal power shall be automatic and shall not cause transmission of a false alarm.
2.13.1 **Batteries**

Provide sealed, maintenance-free, sealed lead acid or gel cell batteries as the source for emergency power to the FACP and FACU. Batteries shall contain suspended electrolyte. The battery system shall be maintained in a fully charged condition by means of a solid state battery charger. Provide an automatic transfer switch to transfer the load to the batteries in the event of the failure of primary power.

2.13.1.1 **Capacity**

Provide the batteries with sufficient capacity to operate the system under supervisory and trouble conditions, including audible trouble signal devices for 72 hours and audible and visual signal devices under alarm conditions for an additional 15 minutes.

2.13.1.2 **Battery Power Calculations**

a. Verify that battery capacity exceeds supervisory and alarm power requirements.

1). Substantiate the battery calculations for alarm, alert, and supervisory power requirements. Ampere-hour requirements for each system component and each panel component, and the battery-recharging period shall be included.

2). Provide complete battery calculations for both the alarm, alert, and supervisory power requirements. Ampere-hour requirements for each system component shall be submitted with the calculations.

3). A voltage drop calculation to indicate that sufficient voltage is available for proper operation of the system and all components, at the minimum rated voltage of the system operating on batteries.

b. For battery calculations use the following assumptions: Assume a starting voltage of 24 VDC for starting the calculations to size the batteries. Calculate the required Amp-Hours for the specified standby time, and then calculate the required Amp-Hours for the specified alarm time. Calculate the nominal battery voltage after operation on batteries for the specified time period. Using this voltage perform a voltage drop calculation for circuit containing device and/or appliances remote from the power sources.

2.13.2 **Battery Chargers**

Provide a solid state, fully automatic, variable charging rate battery charger. The charger shall be capable of providing 150 percent of the connected system load and shall maintain the batteries at full charge. In the event the batteries are fully discharged (18 Volts dc), the charger shall recharge the batteries back to 95 percent of full charge within 48 hours. Provide pilot light to indicate when batteries are manually placed on a high rate of charge as part of the unit assembly if a high rate switch is provided.

2.14 **FIRE ALARM AND MASS NOTIFICATION CONTROL PANEL (FACP/FMCP)**

Provide a complete control panel fully enclosed in a lockable steel
enclosure as specified herein. Locate FACP at the main entrance, inside the building envelope, unless directed and approved by the government otherwise. Operations required for testing or for normal care and maintenance of the systems shall be performed from the front of the enclosure. If more than a single unit is required at a location to form a complete control panel, the unit enclosures shall match exactly.

a. Each control unit shall provide power, supervision, control, and logic for the entire system, utilizing solid state, modular components, internally mounted and arranged for easy access. Each control unit shall be suitable for operation on a 120 volt, 60 hertz, normal building power supply. Provide each panel with supervisory functions for power failure, internal component placement, and operation.

b. Visual indication of alarm, supervisory, or trouble initiation on the fire alarm control panel shall be by liquid crystal display or similar means with a minimum of 80 characters, that at least 32 are field changeable. The MNS Control panel shall have the capability of temporarily deactivate the fire alarm audible notification appliances while delivering voice messages. Provide conductor integrity monitoring for strobe, display, temporary deactivation of fire alarm audible notification appliances and speaker wiring.

c. Provide secure operator console for initiating recorded messages, strobes and displays; and for delivering live voice messages. Provide capacity for at least four pre-recorded messages. Provide the ability to automatically repeat pre-recorded messages. Provide a secure microphone for delivering live messages. Provide adequate discrete outputs to temporarily deactivate fire alarm audible notification, and initiate/synchronize strobes. Provide a complete set of self-diagnostics for controller and appliance network. Provide local diagnostic information display and local diagnostic information and system event log file.

2.14.1 Cabinet

Install control panel components in cabinets large enough to accommodate all components and also to allow ample gutter space for interconnection of panels as well as field wiring. The enclosure shall be identified by an engraved laminated phenolic resin nameplate. Lettering on the nameplate shall say "Fire Alarm and Mass Notification Control Panel" and shall not be less than one inch high. Provide prominent rigid plastic or metal identification plates for lamps, circuits, meters, fuses, and switches. The cabinet shall be provided in a sturdy steel housing, complete with back box, hinged steel door with cylinder lock, and surface mounting provisions. Mounting height shall be roughly "eye level" or as specifically indicated on the drawings.

2.14.2 Control Modules

Provide power and control modules to perform all functions of the FACP. Provide audible signals to indicate any alarm, supervisory, or trouble condition. The alarm signals shall be different from the trouble signal. Connect circuit conductors entering or leaving the panel to screw-type terminals with each terminal marked for identification. Locate diodes and relays, if any, on screw terminals in the FACP. Circuits operating at 24 VDC shall not operate at less than 21.6 volts. Circuits operating at any other voltage shall not have a voltage drop exceeding 10 percent of nominal voltage.
2.14.3 Silencing Switches

a. Alarm Silencing Switch: Provide an alarm silencing switch at the FACP that shall silence the audible signal but not affect the visual alarm indicator. This switch shall be overridden upon activation of a subsequent alarm.

b. Supervisory/Trouble Silencing Switch: Provide supervisory and trouble silencing switch that shall silence the audible trouble and supervisory signal, but not extinguish the visual indicator. This switch shall be overridden upon activation of a subsequent alarm, supervision, or trouble condition. Audible trouble indication must resound automatically every 24 hours after the silencing feature has been operated.

2.14.4 Non-Interfering

Power and supervise each circuit such that a signal from one device does not prevent the receipt of signals from any other device. Circuits shall be manually reset by switch from the FACP after the initiating device or devices have been restored to normal.

2.14.5 Voice Notification System

The Voice Notification System shall comply with the requirements of NFPA 72 for Emergency Voice/Alarm Communications System requirements ISO 7240-16, IEC 60268-16, except as specified herein. The system shall be a one-way multi-channel voice notification system incorporating user selectability of a minimum 8 distinct sounds for tone signaling, and the incorporation of a voice module for delivery of prerecorded messages. Textual audible appliances shall produce a slow whoop tone for three cycles followed by a voice message that is repeated until the control panel is reset or silenced. Automatic messages shall be broadcast through speakers on appropriate floors, but not in stairs or elevator cabs. A live voice message shall override the automatic audible output through use of a microphone input at the control panel.

a. When using the microphone, live messages shall be broadcast through speakers in stairs, in elevator cabs, and throughout a selected floor or floors. The system shall be capable of operating all speakers at the same time. The digitalized voice message shall consist of a non-volatile (EPROM) microprocessor based input to the amplifiers. The microprocessor shall actively interrogate circuitry, field wiring, and digital coding necessary for the immediate and accurate rebroadcasting of the stored voice data into the appropriate amplifier input. Loss of operating power, supervisory power, or any other malfunction that could render the digitalized voice module inoperative shall automatically cause the slow whoop tone to take over all functions assigned to the failed unit.

b. The Mass Notification functions shall override the manual or automatic fire alarm notification or Public Address (PA) functions. The system shall have the capability of utilizing a remote microphone station with redundant controls of the notification system control panel. Class "A" Notification Appliance Circuits (NAC) shall be provided for the activation of strobe appliances. The activation of the NAC Circuits shall follow the operation of the speaker NAC circuits. Audio output shall be selectable for line level (600 ohms),
25, 70.7 or 100 volt output. The audio amplifier outputs shall be not
greater than 100 watts RMS output. The strobe NAC Circuits shall
provide at least 2 amps of 24 VDC power to operate strobes and have the
ability to synchronize all strobes. A hand held microphone shall be
provided and, upon activation, shall take priority over any tone
signal, recorded message or PA microphone operation in progress, while
maintaining the strobe NAC Circuits activation.

All outputs and operational modules shall be fully supervised with on-board
diagnostics and trouble reporting circuits. Form "C" contacts shall be
provided for system alarm and trouble conditions. Circuits shall be
provided for operation of auxiliary appliance during trouble conditions.
During a Mass Notification event the panel shall not generate nor cause any
trouble alarms to be generated with the Fire Alarm system. The Control
Panel for the Voice Notification System shall be independent of the Fire
alarm system and shall be capable of autonomous operation. The system
shall be housed in the same panel with the fire alarm system. Mass
Notification functions shall take precedence over all other function
performed by the Voice Notification System. Messages shall be similar to
the following:

1) 1000 Hz tones (1 sec on, 1/2 second off, 1 second on, 1/2 second
off, 1 second on)

"May I have your attention please. May I have your attention
please. A fire emergency has been reported in the building.
Please leave the building by the nearest exit or exit stairway.
Do not use the elevators." (Provide a 2 second pause.) "May I
have your attention please, (repeat the message)."

2) 1000 Hz tones (1 sec on, 1/2 second off, 1 second on, 1/2 second
off, 1 second on)

"Alert! This is the Mass Notification System.
There is an emergency situation.
DO NOT evacuate the building! Stay in your current location!
Stay tuned for further instructions."
(repeat message 2 times)

3) 1000 Hz tones (1 sec on, 1/2 second off, 1 second on, 1/2 second
off, 1 second on)

"Alert, This is the Mass Notification System.
There is a chemical gas emergency.
Turn off all HVAC equipment, seal all doors and windows with wet
fabric, Don protective gear.
DO NOT evacuate the building, Act now!
Listen to the MNS system for further instructions".
(repeat message 2 times)

4) 1000 Hz tones (1 sec on, 1/2 second off, 1 second on, 1/2 second
off, 1 second on)

"Alert, this is the Mass Notification System.
There is a explosive blast risk along the South wall of your
building.
Quietly move towards the north side of the building, and exit from
the north stairs.
Move away from the building heading north to the north parking
area.
(repeat message 2 times).

a. The Remote Microphone station shall incorporate a Push-To-Talk (PTT) microphone, redundant controls and system status indicators of/for the system. The unit shall incorporate microphone override of any tone generation or prerecorded messages. The unit shall be fully supervised from the control panel. The housing shall contain a lock that is keyed identical to the fire alarm system for the building.

b. Auxiliary Input Module shall be designed to be an outboard expansion module to either expand the number of optional remote microphone stations, or allow a telephone interface.

2.14.6 Memory

Provide each control unit with non-volatile memory and logic for all functions. The use of long life batteries, capacitors, or other age-dependent devices shall not be considered as equal to non-volatile processors, PROMS, or EPROMS.

2.14.7 Field Programmability

Provide control units and control panels that are fully field programmable for control, initiation, notification, supervisory, and trouble functions of both input and output. The system program configuration shall be menu driven. System changes shall be password protected and shall be accomplished using personal computer based equipment. Any proprietary equipment and proprietary software needed by qualified technicians to implement future changes to the fire alarm system shall be provided as part of this contract.

2.14.8 Input/Output Modifications

The FACP shall contain features that allow the bypassing of input devices from the system or the modification of system outputs. These control features shall consist of a panel mounted keypad. Any bypass or modification to the system shall indicate a trouble condition on the FACP, VDU.

2.14.9 Resetting

Provide the necessary controls to prevent the resetting of any alarm, supervisory, or trouble signal while the alarm, supervisory or trouble condition on the system still exists.

2.14.10 Instructions

Provide a typeset printed or typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame. Install the frame in a conspicuous location observable from the FACP. The card shall show those steps to be taken by an operator when a signal is received as well as the functional operation of the system under all conditions, normal, alarm, supervisory, and trouble. The instructions shall be approved by the Contracting Officer before being posted.
2.14.11 Walk Test

The FACP shall have a walk test feature. When using this feature, operation of initiating devices shall result in limited system outputs, so that the notification appliances operate for only a few seconds and the event is indicated on the system printer, but no other outputs occur.

2.14.12 History Logging

In addition to the required printer output, the control panel shall have the ability to store a minimum of 400 events in a log. These events shall be stored in a battery-protected memory and shall remain in the memory until the memory is downloaded or cleared manually. Resetting of the control panel shall not clear the memory.

2.14.13 RS-232-C Output

The FACP shall have an RS-232 connection for programming and configured for use with a laptop computer.

2.14.14 Remote LED Text Display

An LED text display shall be provided at locations as shown on the drawings. The LED text display shall be at least 2 lines with a minimum of 20 characters per line. The size shall not exceed 16 inches length by 6 inches height by 3 inches deep. The text display shall as a minimum meet the following requirements:

a. Two lines of information for high priority messaging.

b. Minimum of 20 characters per line (40 total) displayed.

c. Text shall be no less than 1/2 inch in height and readable from 1 foot to 20 feet away.

d. 32K character memory.

e. RS232 or RS485 serial interface included.

f. Display shall be wall or ceiling mounted.

g. Mounting brackets for a convenient wall/cubicle mount.

h. During non-emergency periods, date and time shall be displayed.

i. All programming shall be accomplished from the Mass Notification network. No user programming shall be required.

An LED text display shall be provided at locations as shown on the drawings. The LED text display shall have minimum character size of 4-inches high and shall spell out the words "EVACUATE" and "ANNOUNCEMENT". The design of LED text display shall be such that it cannot be read when not illuminated. The LED text display shall be capable of being wall or ceiling mounted.

2.15 AMPLIFIERS, PREAMPLIFIERS, TONE GENERATORS

Any amplifiers, preamplifiers, tone generators, digitalized voice generators, and other hardware necessary for a complete, operational, textual audible
circuit conforming to NFPA 72 shall be housed in a fire alarm control unit, terminal cabinet, or in the fire alarm control panel. The system shall automatically operate and control all building fire alarm speakers except those installed in the stairs and within elevator cabs. The speakers in the stairs and elevator cabs shall operate only when the microphone is used to deliver live messages. Each amplifier shall be single output channel.

2.15.1 Construction

Amplifiers shall utilize computer grade solid state components and shall be provided with output protection devices sufficient to protect the amplifier against any transient up to 10 times the highest rated voltage in the system.

2.15.2 Inputs

Each system shall be equipped with separate inputs from the tone generator, digitalized voice driver and panel mounted microphone. Microphone inputs shall be of the low impedance, balanced line type. Both microphone and tone generator input shall be operational on any amplifier.

2.15.3 Tone Generator

The tone generator shall be of the modular, plug-in type with securely attached labels to identify the component as a tone generator and to identify the specific tone it produces. The tone generator shall produce a slow whoop tone, that shall slowly ascend from low (500 hertz) to high (1200 hertz), and shall be constantly repeated until interrupted by either the digitalized voice message, the microphone input, or the alarm silence mode as specified. Each slow whoop cycle shall last approximately 4 seconds. The tone generator shall be single channel with an automatic backup generator per channel such that failure of the primary tone generator causes the backup generator to automatically take over the functions of the failed unit and also causes transfer of the common trouble relay.

2.15.4 Protection Circuits

Each amplifier shall be constantly supervised for any condition that could render the amplifier inoperable at its maximum output. Failure of any component shall cause automatic transfer to a designated backup amplifier, illumination of a visual "amplifier trouble" indicator on the control panel, appropriate logging of the condition on the system printer, and other actions for trouble conditions as specified.

2.16 MANUAL STATIONS

Provide metal or plastic, semi-flush mounted, double action, addressable manual stations, that are not subject to operation by jarring or vibration. Manual pull stations shall be located within 2 feet of the latch side of exit doors. Its location shall be such that an occupant can activate the lever while still adjacent to the door latch releasing mechanism. Deviations shall be approved by the government. Stations shall be equipped with screw terminals for each conductor. Stations that require the replacement of any portion of the device after activation are not permitted. Stations shall be finished in fire-engine red with molded raised lettering operating instructions of contrasting color. The use of a key or wrench shall be required to reset the station. Stations shall be specifically listed or approved for use in the environment in which they
are installed.

2.17 NOTIFICATION APPLIANCES

2.17.1 Fire Alarm/Mass Notification Speakers

Audible appliances shall conform to the applicable requirements of UL 464. Appliances shall be connected into notification appliance circuits. Audible appliances shall generate a unique audible sound from other devices provided in the building and surrounding area. Surface mounted audible appliances shall be painted white. Recessed audible appliances shall be installed with a grill that is painted white.

a. Speakers shall conform to the applicable requirements of UL 1480. Speakers shall have six different sound output levels and operate with audio line input levels of 100 Vac, 70 Vac, 7 Vac, and 25 Vac, by means of selectable tap settings. Tap settings shall include taps of 1/4, 1/2, 1, 2, and 8 watt. Speakers shall incorporate a high efficiency speaker for maximum output at minimum power across a frequency range of 400Hz to 4000Hz, and shall have a sealed back construction. Speakers shall be capable of installation on standard 4 inch square electrical boxes. All inputs shall be polarized for compatibility with standard reverse polarity supervision of circuit wiring via the Voice Notification System.

b. In general, Wall mount speakers shall be semi-flush and installed in accordance with manufacturer's recommendations.

c. Ceiling mount speakers shall be affixed to flush or semi-flush mount and installed in accordance with manufacturer's recommendations.

d. Fabrication marks and hole shall be ground and finished to provide a smooth and neat appearance for each plate. Each plate shall be primed and painted.

2.17.2 Visual Notification Appliances

Visual notification appliances shall conform to the applicable requirements of UL 1971 and conform to the Americans With Disabilities Act (ADA). Fire Alarm Notification Appliances shall have clear high intensity optic lens, xenon flash tubes, and output white light and be marked "Alert" in red letters. The light pattern shall be disbursed so that it is visible above and below the strobe and from a 90 degree angle on both sides of the strobe. Strobe flash rate shall be 1 flash per second and a minimum of 15 candela based on the UL 1971 test. Provide synchronized operation throughout the building. Where wall mount strobes are to be installed on walls, other that gypsum wall board or concrete masonry unit (CMU) block, strobes shall be semi-flush mount on mating/matching surface mount blackbox supplied by the strobe manufacturer. Ceiling mount strobes shall be semi-flush mount on recessed flush mounted outlet boxes.

2.17.3 Connections

Provide screw terminals for each notification appliance. Terminals shall be designed to accept the size conductors used in this project without modification.
2.18 ENVIRONMENTAL ENCLOSURES OR GUARDS

Environmental enclosures shall be provided to permit Fire Alarm or Mass Notification components to be used in areas that exceed the environmental limits of the listing. The enclosure shall be listed for the device or appliance as either a manufactured part number or as a listed compatible accessory for the UL category that the component is currently listed. Guards required to deter mechanical damage shall be either a listed manufactured part or a listed accessory for the category of the initiating device or notification appliance.

2.19 VALVE MONITOR SWITCHES (TAMPER SWITCHES)

Provide a tamper switch for each fire protection system control valve. Tamper switches shall be UL listed as "Extinguishing System Attachment" for the location and type of valve supervised. The device shall contain double pole, double throw contacts. Operation of the switch shall cause a supervisory signal to be transmitted to the FACP upon not more than two complete turns of the valve wheel or a closure of 10 percent, whichever is less. Tamper switches shall be equipped with screw terminals for each conductor.

2.20 WATERFLOW DETECTORS

a. Provide vane type waterflow detectors for wet pipe sprinkler systems. The device shall contain double pole, double throw contacts. Equip the detector with a pneumatic time delay, field adjustable from 0 to 90 seconds. The time delay shall be set initially to 30 seconds. The device shall be a UL listed extinguishing system attachment rated for the particular pressure and location that it is installed. Flow switches shall be equipped with screw terminals for each conductor.

b. Provide pressure type waterflow detectors for dry pipe sprinkler systems, pre-action, and deluge systems. Switch shall be equipped to provide a time delay from 0 to 90 second. The device shall contain double pole, double throw contacts. The device shall be a UL listed extinguishing system attachment rated for the particular pressure and location that it is installed. Switch shall be equipped with screw terminals for each conductor.

2.21 ELECTROMAGNETIC DOOR HOLDERS

Where indicated on the drawings, provide magnetic fire door hold open devices. The electromagnetic holding devices shall be designed to operate on 120 VAC or 24 VDC, and require not more than 3 watts of power to develop 25 psi of holding force. Under normal conditions, the magnets shall attract and hold the doors open. The initiation of any fire alarm shall cause the release of the electromagnetic door holding device permitting the door to be closed by the door closer. Operation shall be fail safe with no moving parts. Electromagnetic door hold-open devices shall not be required to be held open during building power failure. The device shall be UL listed based on UL 228 tests.

2.22 INTERFACE TO THE BASE WIDE MASS NOTIFICATION NETWORK

2.22.1 Wide Area Network/Local Area Network (WAN/LAN)

The FACP shall include the provisions to interface with the Base-wide mass notification Giant Voice System via a Government Furnished Government...
Installed (GFGI) Giant Voice Interface Panel (GVIP). The GVIP will be a Cooper/MadahCom/Wheelock TRX-401/UPS-901 unit, with Universal Waves Interface (UWI) if required. The FACP shall receive the following inputs from the GVIP: (1) a wideband 600-ohm line level (balanced or unbalanced) audio channel; and (2) either a push-to-talk (PTT) dry contact or a full-duplex RD-232 data channel at up to 9.6 kbps. The full-duplex RS-232 data channel interface shall be utilized if available from the FACP manufacturer as a standard option, otherwise the PTT dry contact shall be utilized.

2.22.2 RS-232/RS-485

The panel shall support a direct connect via RS-232 or RS-485 connections.

2.22.3 Secure Radio System

2.22.3.1 Communications Network

The communications network provides two-way signals between central control units and autonomous control units (in individual building systems), and should include redundant (primary and backup) communication links. The system shall incorporate technology to prevent easy interruption of the radio traffic for MNS Alerting.

2.22.3.2 Radio Frequency Communications

Use of radio frequency-type communications systems shall comply with National Telecommunications and Information Administration (NTIA) requirements. The systems shall be designed to minimize the potential for interference, jamming, eavesdropping, and spoofing.

2.22.3.3 Licensed Radio Frequency Systems

An approved DD Form 1494 for the system is required prior to operation.

2.23 AUTOMATIC FIRE TRANSMITTERS

2.23.1 Radio Transmitter and Interface Panels

Transmitters shall be compatible with proprietary supervising station receiving equipment. Each radio alarm transmitter shall be the manufacturer's recognized commercial product, completely assembled, wired, factory tested, and delivered ready for installation and operation. Transmitters shall be provided in accordance with applicable portions of NFPA 72, Federal Communications Commission (FCC) 47 CFR 90 and Federal Communications Commission (FCC) 47 CFR 15. Transmitter electronics module shall be contained within the physical housing as an integral, removable assembly. The proprietary supervising station receiving equipment is King-Fisher Company and the transceiver shall be fully compatible with this equipment. At the contractors option, and if UL or FM listed, the transmitter may be housed in the same panel as the fire alarm control panel. The transmitter shall be Narrowband radio, with FCC certification for narrowband operation and meets the requirements of the NTIA (National Telecommunications and Information Administration) Manual of Regulations and Procedures for Federal Frequency Management.

a. Operation: Each transmitter shall operate from 120-volt ac power. In the event of 120-volt ac power loss, the transmitter shall automatically switch to battery operation. Switchover shall be
accomplished with no interruption of protective service, and shall automatically transmit a trouble message. Upon restoration of ac power, transfer back to normal ac power supply shall also be automatic.

b. **Battery Power**: Transmitter standby battery capacity shall provide sufficient power to operate the transmitter in a normal standby status for a minimum of 72 hours and be capable of transmitting alarms during that period.

c. Transmitter housing shall be NEMA Type 1. The housing shall contain a lock that is keyed. Radio alarm transmitter housing shall be factory painted with a suitable priming coat and not less than two coats of a hard, durable weatherproof enamel.

d. Antenna shall be omnidirectional, coaxial, halfwave dipole antennas for radio alarm transmitters with a driving point impedance to match transmitter output. The antenna and antenna mounts shall be corrosion resistant and designed to withstand wind velocities of 161 km/h. 100 mph. Antennas shall not be mounted to any portion of the building roofing system. Protect the antenna from physical damage.

2.23.2 **Knox Boxes**

Provide a Knox box and key according to base standards.

2.23.3 **Signals to Be Transmitted to the Base Receiving Station**

The following signals shall be sent to the base receiving station:

- a. Sprinkler water flow *(alarm)*
- b. Manual pull stations *(alarm)*
- c. Smoke detectors *(alarm)*
- d. Duct smoke detectors *(alarm)*
- e. Heat detectors *(alarm)*
- f. Sprinkler valve supervision *(supervisory)*
- g. General trouble signal *(trouble)*

2.24 **WIRING**

Provide wiring materials under this section as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM with the additions and modifications specified herein.

2.24.1 **Alarm Wiring**

The SLC wiring shall be copper cable in accordance with the manufacturers requirements. Copper signaling line circuits and initiating device circuit field wiring shall be No. 14 AWG size conductors at a minimum. Notification appliance circuit conductors, that contain audible alarm devices, shall be solid copper No. 16 AWG size conductors at a minimum. Wire size shall be sufficient to prevent voltage drop problems. Circuits operating at 24 VDC shall not operate at less than 21.6 volts. Circuits operating at any other voltage shall not have a voltage drop exceeding 10
percent of nominal voltage. Power wiring, operating at 120 VAC minimum, shall be a minimum No. 12 AWG solid copper having similar insulation.

PART 3 EXECUTION

3.1 INSTALLATION OF FIRE ALARM INITIATING AND INDICATING DEVICES

a. FACP/FMCP: Locate the FACP/FMCP where indicated on the drawings. Surface mount the enclosure with the top of the cabinet 6 feet above the finished floor or center the cabinet at 5 feet, whichever is lower. Conductor terminations shall be labeled and a drawing containing conductors, their labels, their circuits, and their interconnection shall be permanently mounted in the FACP.

b. Manual Stations: Locate manual stations as required by NFPA 101 IEC 60268, Part 16, and ASA S3.2 and NFPA 72 where shown on the drawings. Mount stations so their operating handles are 4 feet above the finished floor. Mount stations so they are located no farther than 5 feet from the exit door they serve, measured horizontally.

c. Notification Appliance Devices: Locate notification appliance devices as required by NFPA 72 where shown on the drawings. Mount assemblies on walls 90 inches above the finished floor or 6 inches below the ceiling whichever is lower. Ceiling mounted speakers shall conform to NFPA 72.

d. Smoke Detectors: Locate sensors as required by NFPA 72 and their listings as shown on the drawings on a recessed flush mount outlet box. Sensors located on the ceiling shall be installed not less than 4 inches from a side wall to the near edge. Those located on the wall shall have the top of the sensor at least 4 inches below the ceiling, but not more than 12 inches below the ceiling. In raised floor spaces, the smoke sensors shall be installed to protect 225 square feet per sensor. Install smoke sensors no closer than 5 feet from air handling supply outlets.

3.2 SYSTEM FIELD WIRING

3.2.1 Wiring within Cabinets, Enclosures, and Boxes

Provide wiring installed in a neat and workmanlike manner and installed parallel with or at right angles to the sides and back of any box, enclosure, or cabinet. Conductors that are terminated, spliced, or otherwise interrupted in any enclosure, cabinet, mounting, or junction box shall be connected to terminal blocks. Mark each terminal in accordance with the wiring diagrams of the system. Make connections with approved pressure type terminal blocks, that are securely mounted. The use of wire nuts or similar devices shall be prohibited. Wiring shall conform to NFPA 70. Put all circuits complete without splices.

3.2.2 Terminal Cabinets

Provide a terminal cabinet at the base of any circuit riser, on each floor at each riser, and where indicated on the drawings. Terminal size shall be appropriate for the size of the wiring to be connected. Conductor terminations shall be labeled and a drawing containing conductors, their labels, their circuits, and their interconnection shall be permanently mounted in the terminal cabinet. Minimum size is 8 inches by 8 inches.
3.2.3 Alarm Wiring

Provide all wiring in rigid metal conduit or intermediate metal conduit. Voltages shall not be mixed in any junction box, housing, or device, except those containing power supplies and control relays. Electrical metallic tubing conduit is acceptable in dry locations not enclosed in concrete or where not subject to mechanical damage. Conceal conduit in finished areas of new construction and wherever practicable in existing construction. The use of flexible conduit not exceeding a 6 foot length shall be permitted in initiating device circuits. Run conduit or tubing concealed unless specifically shown otherwise on the drawings. Shielded wiring shall be utilized where recommended by the manufacturer. For shielded wiring, the shield shall be grounded at only one point, that shall be in or adjacent to the FACP. Pigtail or T-tap connections to signal line circuits, initiating device circuits, supervisory alarm circuits, and notification appliance circuits are prohibited. Color coding is required for circuits and shall be maintained throughout the circuit. Conductors used for the same functions shall be similarly color coded. Wiring shall conform to NFPA 70. Put all circuits complete without splices.

3.2.4 Conductor Terminations

Labeling of conductors at terminal blocks in terminal cabinets, FACP, and remote fire alarm control units shall be provided at each conductor connection. Each conductor or cable shall have a shrink-wrap label to provide a unique and specific designation. Each terminal cabinet, FACP, and fire alarm control unit shall contain a laminated drawing that indicates each conductor, its label, circuit, and terminal. The laminated drawing shall be neat, using 12 point lettering minimum size, and mounted within each cabinet, panel, or unit so that it does not interfere with the wiring or terminals. Maintain existing color code scheme where connecting to existing equipment.

3.3 CONNECTION OF NEW SYSTEM

The following new system connections shall be made during the last phase of construction, at the beginning of the preliminary tests. New system connections shall include:

a. Connection of new control modules to existing magnetically held smoke door (hold-open) devices.

b. Connection of new elevator recall smoke sensors to existing wiring and conduit.

c. Connection of new system transmitter to existing base fire reporting system.

Once these connections are made, system shall be left energized and new audio/visual devices deactivated. Report immediately to the Contracting Officer, coordination and field problems resulting from the connection of the above components.

3.4 FIRESTOPPING

Provide firestopping for holes at conduit penetrations through floor slabs, fire rated walls, partitions with fire rated doors, corridor walls, and vertical service shafts in accordance with Section 07 84 00 FIRESTOPPING.
3.5 **PAINTING**

Paint exposed electrical, fire alarm conduit, and surface metal raceway to match adjacent finishes in exposed areas. Paint junction boxes and surface metal raceways red in unfinished areas. Painting shall comply with Section 09 90 00 PAINTS AND COATINGS.

3.6 **FIELD QUALITY CONTROL**

3.6.1 **Testing Procedures**

Detailed test procedures, prepared and signed by a Registered Professional Engineer or a NICET Level 3 Fire Alarm Technician, and signed by representative of the installing company, for the fire detection and alarm system 60 days prior to performing system tests. Detailed test procedures shall list all components of the installed system such as initiating devices and circuits, notification appliances and circuits, signaling line devices and circuits, control devices/equipment, batteries, transmitting and receiving equipment, power sources/supply, annunciators, special hazard equipment, emergency communication equipment, interface equipment, Guard's Tour equipment, and transient (surge) suppressors. Test procedures shall include sequence of testing, time estimate for each test, and sample test data forms. The test data forms shall be in a check-off format (pass/fail with space to add applicable test data) and shall be used for the preliminary testing and the acceptance testing. The test data forms shall record the test results and shall:

a. Identify the NFPA Class and Style of all Initiating Device Circuits (IDC), Notification Appliance Circuits (NAC), Voice Notification System, and Signaling Line Circuits (SLC).

b. Identify each test required by NFPA 72 Test Methods and required test herein to be performed on each component, and describe how this test shall be performed.

c. Identify each component and circuit as to type, location within the facility, and unique identity within the installed system. Provide necessary floor plan sheets showing each component location, test location, and alphanumeric identity.

d. Identify all test equipment and personnel required to perform each test (including equipment necessary for testing smoke detectors using real smoke).

e. Provide space to identify the date and time of each test. Provide space to identify the names and signatures of the individuals conducting and witnessing each test.

3.6.2 **Tests Stages**

a. Preliminary Testing: Conduct preliminary tests to ensure that devices and circuits are functioning properly. Tests shall meet the requirements of paragraph entitled "Minimum System Tests." After preliminary testing is complete, provide a letter certifying that the installation is complete and fully operable. The letter shall state that each initiating and indicating device was tested in place and functioned properly. The letter shall also state that panel functions were tested and operated properly. The letter shall include the names and titles of the witnesses to the preliminary tests. The Contractor
and an authorized representative from each supplier of equipment shall be in attendance at the preliminary testing to make necessary adjustments.

b. Request for Formal Inspection and Tests: When tests have been completed and corrections made, submit a signed, dated certificate with a request for formal inspection and tests to the Naval Facilities Engineering Command, NAVFAC SE, Fire Protection Engineer.

c. Final Testing: Notify the Contracting Officer in writing when the system is ready for final acceptance testing. Submit request for test at least 15 calendar days prior to the test date. The tests shall be performed in accordance with the approved test procedures in the presence of the Contracting Officer. Furnish instruments and personnel required for the tests. A final acceptance test will not be scheduled until the operation and maintenance (O&M) manuals are furnished to the Contracting Officer and the following are provided at the job site:

1. The systems manufacturer's technical representative
2. Marked-up red line drawings of the system as actually installed
3. Megger test results
4. Loop resistance test results
5. Complete program printout including input/output addresses

A fourteen (14) day "burn-in" period for the fire alarm and transmitter shall be required prior to final acceptance of the systems. This burn-in period shall start from the day that system commissioning is successfully completed and the system is placed "in-service". The final tests shall be witnessed by the Naval Facilities Engineering Command, NAVFAC SE, Fire Protection Engineer. At this time, any and all required tests shall be repeated at their discretion. Following acceptance of the system, as-built drawings and O&M manuals shall be delivered to the Contracting Officer for review and acceptance.

3.6.3 Minimum System Tests

Record of completion forms shall be signed by the NICET certified supervising installer. Commissioning procedures shall comply with NFPA and NAVFAC criteria. All systems shall be fully pretested by the contractor with QA/QC manager present. Final acceptance testing shall be done with the Government present, and placed in service prior to occupancy. NO further work by the contractor is permitted after the systems are accepted by the Government.

Test the system in accordance with the procedures outlined in NFPA 72, ISO 7240-16, IEC 60268-16. The required tests are as follows:

a. Megger Tests: After wiring has been installed, and prior to making any connections to panels or devices, wiring shall be megger tested for insulation resistance, grounds, and/or shorts. Conductors with 300 volt rated insulation shall be tested at a minimum of 250 VDC. Conductors with 600 volt rated insulation shall be tested at a minimum of 500 VDC. The tests shall be witnessed by the Contracting Officer and test results recorded for use at the final acceptance test.
b. Loop Resistance Tests: Measure and record the resistance of each circuit with each pair of conductors in the circuit short-circuited at the farthest point from the circuit origin. The tests shall be witnessed by the Contracting Officer and test results recorded for use at the final acceptance test.

c. Verify the absence of unwanted voltages between circuit conductors and ground. The tests shall be accomplished at the preliminary test with results available at the final system test.

d. Verify that the control unit is in the normal condition as detailed in the manufacturer's O&M manual.

e. Test each initiating and indicating device and circuit for proper operation and response at the control unit. Smoke sensors shall be tested in accordance with manufacturer's recommended calibrated test method. Use of magnets is prohibited. Testing of duct smoke detectors shall comply with the requirements of NFPA 72.

f. Test the system for specified functions in accordance with the contract drawings and specifications and the manufacturer's O&M manual.

g. Test both primary power and secondary power. Verify, by test, the secondary power system is capable of operating the system for the time period and in the manner specified.

h. Determine that the system is operable under trouble conditions as specified.

i. Visually inspect wiring.

j. Test the battery charger and batteries.

k. Verify that software control and data files have been entered or programmed into the FACP. Hard copy records of the software shall be provided to the Contracting Officer.

l. Verify that red-line drawings are accurate.

m. Measure the current in circuits to ensure there is the calculated spare capacity for the circuits.

n. Measure voltage readings for circuits to ensure that voltage drop is not excessive.

o. Disconnect the verification feature for smoke sensors during tests to minimize the amount of smoke needed to activate the sensor. Testing of smoke sensors shall be conducted using real smoke. The use of canned smoke is prohibited.

p. Measure the voltage drop at the most remote appliance (based on wire length) on each notification appliance circuit.

q. Audibility Intelligibility testing of the Voice Evacuation Notification System shall be accomplished iaw NFPA 72 for Voice Evacuation Systems, IEC 60268-16, and ASA S3.2.

r. Opening the circuit at not less than 50% of alarm initiating
devices and notification appliances to test the wiring supervisory feature.

s. Demonstrate modem communications with remote sites as specified by the COR. Dial in capability shall also, be demonstrated, using specified security.

t. Demonstrate fiber optic communications with remote sites as specified by the COR. Dial in capability shall also, be demonstrated, using specified security.

3.7 **INSTRUCTION OF GOVERNMENT EMPLOYEES**

Equipment manufacturer shall provide 1 day on site and 2 days of technical training to the Government at the manufacturing facility. Training shall allow for classroom instruction as well as individual hands on programming, troubleshooting and diagnostics exercises. Room and board costs shall be included for two Government personnel. Training shall occur within 6 months of system acceptance.

3.7.1 **Instructor**

Include in the project the services of an instructor, who has received specific training from the manufacturer for the training of other persons regarding the inspection, testing, and maintenance of the system provided. The instructor shall train the Government employees designated by the Contracting Officer, in the care, adjustment, maintenance, and operation of the fire alarm system. Each instructor shall be thoroughly familiar with all parts of this installation. The instructor shall be trained in operating theory as well as in practical O&M work.

3.7.2 **Required Instruction Time**

Provide (3) 4 hour training sessions after final acceptance of the system. The instruction shall be given during regular working hours on such dates and times as are selected by the Contracting Officer. The training shall allow for rescheduling for unforeseen maintenance and/or fire department responses.

3.7.3 **Technical Data and Computer Software**

Provide, in manual format, lesson plans, operating instructions, maintenance procedures, and training data for the training courses. The operations training shall familiarize designated government personnel with proper operation of the installed system. The maintenance training course shall provide the designated government personnel adequate knowledge required to diagnose, repair, maintain, and expand functions inherent to the system.

-- End of Section --